Using Excel

For Principles of Econometrics, Third Edition

Version 1.0

Using Excel
 For Principles of Econometrics, Third Edition

ASLI K. OGUNC

Texas A\&M University-Commerce

R. CARTER HILL
Louisiana State University

JOHN WILEY \& SONS, INC
New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

Asli Ogunc dedicates this work to Patara

Carter Hill dedicates this work to Todd and Peter

ACQUISITIONS EDITOR
MARKETING MANAGER
PRODUCTION EDITOR
PHOTO EDITOR
ILLUSTRATION COORDINATOR

Xxxyxx Xxxxyxxx

Xxxxxx Xxxxyxxx
Xxxyxx Xxxxxyxx
Xxxxyx Xxxxxyxx
Xxxxxx Xxxxxxxx

This book was set in Times New Roman and printed and bound by.XXXXXX XXXXXXXXXX. The cover was printed by. XXXXXXXX XXXXXXXXXXXX

This book is printed on acid-free paper. ∞

The paper in this book was manufactured by a mill whose forest management programs include sustained yield harvesting of its timberlands. Sustained yield harvesting principles ensure that the numbers of trees cut each year does not exceed the amount of new growth.

Copyright © John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 7504470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, EMail: PERMREQ@WILEY.COM.

ISBN 0-471-xxxxx-x
Printed in the United States of America

10987654321

PREFACE

This book is a supplement to Principles of Econometrics, $3^{\text {rd }}$ Edition by R. Carter Hill, William E. Griffiths and Guay C. Lim (Wiley, 2008), hereinafter POE. This book is not a substitute for the textbook, nor is it a stand alone computer manual. It is a companion to the textbook, showing how to perform the examples in the textbook using Excel 2003. This book will be useful to students taking econometrics, as well as their instructors, and others who wish to use Excel for econometric analysis.

In addition to this computer manual for Excel, there are similar manuals and support for the software packages EViews, Excel, Gretl, Shazam and Stata. In addition, all the data for $P O E$ in various formats, including Excel, are available at http://www.wiley.com/college/hill.

Individual Excel data files, errata for this manual and the textbook can be found at http://www.bus.lsu.edu/hill/poe. Templates for routine tasks can also be found at this web site.

The chapters in this book parallel the chapters in POE. Thus, if you seek help for the examples in Chapter 11 of the textbook, check Chapter 11 in this book. However within a Chapter the sections numbers in POE do not necessarily correspond to the Excel manual sections.

We welcome comments on this book, and suggestions for improvement. *

Asli K. Ogunc
Department of Accounting, Economics and Finance
Texas A\&M University-Commerce
Commerce, TX 75429
Asli_Ogunc@tamu-commerce.edu
R. Carter Hill

Economics Department
Louisiana State University
Baton Rouge, LA 70803
eohill@lsu.edu

[^0]
BRIEF CONTENTS

1. Introducing Excel 1
2. Simple Linear Regression 21
3. Interval Estimation and Hypothesis Testing 39
4. Prediction, Goodness of Fit and Modeling Issues 49
5. Multiple Linear Regression 68
6. Further Inference in the Multiple Regression Model 80
7. Nonlinear Relationships 104
8. Heteroskedasticity 125
9. Dynamic Models, Autocorrelation, and Forecasting 142
10. Random Regressors and Moment Based Estimation 155
11. Simultaneous Equations Models 169
12. Nonstationary Time Series Data and Cointegration 178
13. An Introduction to Macroeconometrics: VEC and VAR Models 188
14. An Introduction to Financial Econometrics: Time-Varying Volatility and ARCH Models 200
15. Panel Data Models 204
16. Qualitative and Limited Dependent Variable Models 215
17. Importing Internet Data 219
Appendix B. Review of Probability Concepts 223

CONTENTS

CHAPTER 1 Introduction to Excel 1

1.1 Starting Excel 1
1.2 Entering Data 4
1.3 Using Excel for Calculations 6
1.3.1 Arithmetic operations 8
1.3.2 Mathematical functions 9
1.4 Excel Files for Principles of

Econometrics 15
1.4.1 John Wiley \& Sons website 15
1.4.2 Principles of Econometrics website 16
1.4.3 Definition files 16
1.4.4 The food expenditure data 16
4.2 Measuring Goodness-of-Fit 53
4.2.1 Calculating $R^{2} \quad 54$
4.2.2 Covariance and correlation analysis 54
4.3 Residual Diagnostics 57
4.3.1 The Jarque-Bera test for normality 59
4.4 Modeling Issues 60
4.4.1 Scaling the data 60
4.4.2 The log-linear model 61
4.4.3 The linear-log model 62
4.4.4 The log-log model 62
4.54.5.1 Residual analysis with wheatdata 63
4.5.2 Log-linear model with wagedata 65
4.5.3 Generalized R^{2} 67
CHAPTER 5 Multiple Linear Regression 68
5.1 Big Andy’s Burger Barn 68
5.2 Prediction 70
5.3 Sampling Precision 71
5.4 Confidence Intervals 76
5.5 Hypothesis Testing 77
5.6 Goodness-of-Fit 78
CHAPTER 6 Further Inference in the Multiple Regression Model 80
6.1 The F-test 80
6.2 Testing the Overall Significance of the Model 84
6.3 An Extended Model 85
6.4 Testing Some EconomicHypotheses 86
6.4.1 The Significance ofadvertising 86
6.4.2 Optimal level of advertising 8
6.5 Nonsample Information 90
6.6 Model Specification 93
6.6.1 Omitted variables 93
6.6.2 Irrelevant variables 94
6.6.3 Choosing the model 94
6.7 Poor Data, Collinearity and Insignificance 99
CHAPTER 7 Nonlinear Relationships 104
7.1 Nonlinear Relationships 104
7.1.1 Summarize data and estimate regression 104
7.1.2 Calculating a marginal effect 106
7.2 Dummy Variables 107
7.2.1 Creating dummyvariables 107
7.2.2 Estimating a dummy variableregression 107
7.2.3 Testing the significance of thedummy variables 109
7.2.4 Further calculations 109
7.3 Applying Dummy Variables 110
7.3.1 Interactions betweenqualitative factors 110
7.3.2 Adding regional dummyvariables 114
7.3.3 Testing the equivalence of tworegressions116
7.4 Interactions Between ContinuousVariables119
7.5 Dummy Variables in Log-linear Models 12
CHAPTER 8 Heteroskedasticity 125
8.1 The Nature of Heteroskedasticity 125
8.2 Using the Least Squares Estimator 126
8.3 The Generalized Least Squares
Estimator 128
8.3.1 Transforming the model 128
8.3.2 Estimating the variancefunction 130
8.3.3 A heteroskedasticpartition 131
8.4 Detecting Heteroskedasticity 134
8.4.1 Residual plots 134
8.4.2 The Goldfeld-Quandttest 135
8.4.3 Testing the variancefunction 139
CHAPTER 9 Dynamic Models, Autocorrelation, and Forecasting 142
9.1 Lags in the Error Term 142
9.2 Area Response for Sugar 143
9.3 Estimating an AR(1) Model 145
9.3.1 Least squares 145
9.4 Detecting Autocorrelation 1489.4.1 The Durbin-Watsontest 148
9.4.2 An LM test 149
9.5 Autoregressive Models 150
9.6 Finite Distributed Lags 151
9.7 Autoregressive Distributed Lag (ARDL) Model 153
CHAPTER 10 Random Regressors and Moment Based Estimation 155
10.1 Least Squares with Simulated Data 155
10.2 Instrumental Variables Estimation with Simulated Data 157
10.2.1 Correction of IV standard errors 159
10.2.2 Corrected standard errors for simulated data 160
10.3 The Hausman Test: Simulated Data 162
10.4 Testing for Weak Instruments: Simulated Data 163
10.5 Testing for Validity of Surplus Instruments: Simulated Data 164
10.6 Estimation using Mroz Data 164
10.6.1 Least squares regression 164
10.6.2 Two-stage least squares 165
10.7 Testing the Endogeneity of Education 167
10.8 Testing for Weak Instruments 167
10.9 Testing the Validity of Surplus Instruments 168
CHAPTER 11 Simultaneous Equations Models 169
11.1 Truffle Supply and Demand 169
11.2 Estimating the Reduced FormEquations170
11.3 2SLS Estimates of Truffle Demand and Supply 171
11.3.1 Correction of 2SLS standard errors 173
11.3.2 Corrected standard errors intruffle demand
and supply 174
11.4 Supply and Demand of Fish 175
11.5 Reduced Forms for Fish Price and Quantity 176

CHAPTER 12 Nonstationary Time-Series
 Data and Cointegration 178

12.1 Stationary and Nonstationary Data 178
12.2 Spurious Regression 179
12.3 Unit Root Test for Stationarity 181
$\begin{array}{ll}\text { 12.4 } & \text { Integration and } \\ & \text { Cointegration } 185\end{array}$
12.5 Engle-Granger Test 185

CHAPTER 13 An Introduction to
Macroeconometrics: VEC and VAR
Models 188
13.1 VEC and VAR Models 188
13.2 Estimating a VEC Model 188
13.3 Estimating VAR 197

CHAPTER 14 An Introduction to Financial
Econometrics: Time-Varying Volatility and ARCH Models 200
14.1 ARCH Model and Time Varying

Volatililty 200
14.2 Testing, Estimating and Forecasting 202

CHAPTER 15 Panel Data Models 205

15.1 Sets of Regression Equations 205
15.2 Seemingly Unrelated Regressions 209
15.2.1 Breusch-Pagan test of independence 209
15.3 The Fixed Effects Model 210
15.3.1 A dummy variable model 211
15.4 Random Effects Estimation 214

CHAPTER 16 Qualitative and Limited Dependent Variable Models 215
16.1 Models with Binary Dependent Variables 215
16.1.1 The linear probability model 216
16.1.2 Least squares estimation of the linear probability model 216

CHAPTER 17 Importing Internet Data 219

Appendix B Review of Probability Concepts 223

B. 1 Binomial Probabilities 223

B.1.1 Computing binomial probabilities directly 223

B.1.2 Computing binomial probabilities using BINOMDIST 225
B. 2 The Normal Distribution 227

CHAPTER

Introduction to Excel

CHAPTER OUTLINE

1.1 Starting Excel
1.2 Entering Data
1.3 Using Excel for Calculations
1.3.1 Arithmetic operations
1.3.2 Mathematical functions
1.4 Excel Files for Principles of Econometrics
1.4.1 John Wiley \& Sons website
1.4.2 Principles of Econometrics website
1.4.3 Definition files
1.4.4 The food expenditure data

1.1 STARTING EXCEL

Start Excel by clicking the Start menu and locating the program, or by clicking a shortcut, such as,

Excel opens. Click on the New Workbook icon.

The worksheet looks like this

2 Chapter 1

There are lots of little bits that you will become more familiar with as we go along. The active cell is surrounded by a border and is in Column A and Row 1. We will refer to cells as A1, B1 and so on.

Across the top of the window is a Menu bar. Sliding the mouse over the items opens up a pull down menu, showing further options.

Perhaps the most important of all these is Help.

Microsoft Office has a cute (or annoying) feature. You can have a little assistant showing on the screen. If you click your assistant you can type in a question or search.

If you right-click on the critter you can choose to hide him or change is personality. We will hide him.

Hide
Options...
Choose Assistant...
Animate!

The Standard Toolbar has the usual Microsoft functions New, Open, Save, Print, Print preview, Copy and Paste. The AutoSum key is a feature of Excel, and the Sort buttons allow you to order data according to the magnitude of one of your columns.

The Formatting Toolbar has the usual functions. The use of Grid lines can clarify a worksheet, as can the use of colored fonts and filling in cells for emphasis.

1.2 ENTERING DATA

We will use Excel to analyze data. To enter data into an Excel worksheet move the cursor to a cell and type. First enter X in cell A1 and Y in cell B1. Navigate by moving the cursor with the mouse, or use the Tab key to move right or left, or Arrow keys to move right, left, up or down.

	A		B
1	X	Y	
2			
3			
4			

In A2, enter the number 1. Press Enter and it will take you to the next cell, fill in the rest as shown.

	A		B
1	X		
2			
3		2	
4			
5			
6		5	

To nicely center the data in the cells, highlight cells A1:A6. There are several ways to highlight the cells. For small areas the easiest way is to place cursor in A1, hold down the left mouse button and drag it across the area you wish to highlight. For larger areas, using a key-stroke combination is very convenient.

- To highlight a column-place cursor in A1. Hold down Ctrl-key and Shift-key simultaneously, which we will denote as Ctrl-Shift. Press the down arrow \downarrow on the keyboard.
- To highlight a row-place cursor in A1. Press Ctrl-Shift and right arrow \rightarrow on the keyboard.
- To highlight a region-place cursor in A1. Press Ctrl-Shift then the down arrow and then the right arrow.

After selecting A1:A6, click Center

The result is

	A	B
1	X	Y
2	1	
3	2	
4	3	
5	4	
6	5	

Repeat this process for B1:B6. This centering is just for appearance, and has no affect on any functionality.

	A	B	C
1	X	Y	
2	1	2	
3	2	3	
4	3	6	
5	4	5	
6	5	7	
7			

To highlight the entire worksheet, click the square in the upper left corner.

	A	B	C
1			
2			
3			
4			
5			
6	To highlight		
7	Worksheet		
8	Wors		

6 Chapter 1

1.3 USING EXCEL FOR CALCULATIONS

What is Excel good for? Its primary usefulness is to carry out repeated calculations. We can add, subtract, multiply and divide; and we can apply mathematical and statistical functions to the data in our worksheet. To illustrate, highlight Columns A \& B, down to row 7, as shown below. Click AutoSum. This will sum the rows and place the sum in the final row.

The result its

Carry out a similar sequence of steps to sum the columns. Highlight rows 2:6 and columns A:C. Click AutoSum.

The column sum $(\mathrm{X}+\mathrm{Y})$ is now in column C .

	A		B		C	
1	X		Y			
2	1		2			3
3	2		3			5
4	3		6			9
5	4		5			9
6	5		7			12
7		15		23		

To Insert Columns hold the cursor over the A in column A．The cursor turns into a down arrow and the entire first column is highlighted．

区 Microsoft Excel－Book1			
：区id Eile Edit View Insert Format			
台rial \quad－ $10 \sim \|$B			
	1C		
	$\sqrt{3} \mathrm{~A}$	B	C
1	X	Y	
2	1	2	3
3	2	3	5
4	3	6	9
5	4	5	9
6	5	7	12
7	15	23	
8			

On the Excel Menu select Insert／Columns．This will insert a new column to the left of the highlighted column．

Enter a column head，which will serve to identify what is in the first row，and enter＂Sum＂to identify the contents of row 7 ．

	A	B	C	D
1	Variable	X	Y	
2		1	2	3
3		2	3	5
4		3	6	9
5		4	5	9
6		5	7	12
7	Sum		15	

8 Chapter 1

Add a header in column D.

	A	B	C	D
1	Variable	X	Y	Sum
2		1	2	3
3		2	3	5
4		3	6	9
5		4	5	9
6		5	7	12
7	Sum	15	23	

1.3.1 Arithmetic operations

Standard arithmetical functions are defined as follows (from Excel Help, type arithmetic operators)

Arithmetic operators: To perform basic mathematical operations such as addition, subtraction, or multiplication; combine numbers; and produce numeric results, use the following arithmetic operators.

Arithmetic operator	Meaning (Example)
+ (plus sign)	Addition $(3+3)$
$-($ minus sign $)$	Subtraction $(3-1)$ Negation (-1)
* (asterisk)	Multiplication $\left(3^{\star} 3\right)$
/ (forward slash)	Division $(3 / 3)$
$\%$ (percent sign)	Percent (20%)
\wedge (caret)	Exponentiation $\left(3^{\wedge} 2\right)$

To create a new variable Y2, select cell E2 and enter the formula $=\mathbf{C 2} \mathbf{2}^{\wedge}$. This command instructs Excel to square the value in cell C 2 .

The new value is $\mathrm{Y} 2=4$. Select this cell, and click Copy (or the shortcut Ctrl+C)

The border of the cell begins to rotate. Move the cursor to the lower right corner of the cell until the "plus" sign appears.

	A	B	C	D	E	
1	Variable	X	Y	Sum	Y2	
2		1	2	3	4	
3		2	3	5		+
4		3	6	9		
5		4	5	9		
6		5	7	12		
7	Sum	15	23			

Hold the left mouse button down and drag the plus down to cell E6.

	A	B	C	D	E	
1	Variable	X	Y	Sum	Y2	
2		1	2	3	4	
23		2	3	5	9	
4		3	6	9	36	
5		4	5	9	25	
2		5	7	12	49	2

Release the left button and you will find the new values of Y2. What you have done is Copy the formula in E2 to the new cells, and Excel calculates the square of each Y value.

1.3.2 Mathematical functions

There are a large number of mathematical functions, most of which you will never use. Find the right function is fairly simple using Help. Search for math functions.

Among the results returned is "Find functions and enter arguments" which is an online training session video, which you might find useful.

10 Chapter 1

Another entry is "List of worksheet functions". A partial list of the functions available is listed on the next page. These are taken from the Excel help result.

Math and trigonometry functions

Function	Description
ABS	Returns the absolute value of a number
CEILING	Rounds a number to the nearest integer or to the nearest multiple of significance
COMBIN	Returns the number of combinations for a given number of objects
EVEN	Rounds a number up to the nearest even integer
EXP	Returns e raised to the power of a given number
FACT	Returns the factorial of a number
FACTDOUBLE	Returns the double factorial of a number
FLOOR	Rounds a number down, toward zero
GCD	Returns the greatest common divisor
INT	Rounds a number down to the nearest integer
LCM	Returns the least common multiple
LN	Returns the natural logarithm of a number
LOG10	Returns the base-10 logarithm of a number
ODD	Rounds a number up to the nearest odd integer
PI	Returns the value of pi
POWER	Returns the result of a number raised to a power
PRODUCT	Multiplies its arguments
QUOTIENT	Returns the integer portion of a division
RAND	Returns a random number between 0 and 1
RANDBETWEEN	Returns a random number between the numbers you specify
ROUND	Rounds a number to a specified number of digits
ROUNDDOWN	Rounds a number down, toward zero
ROUNDUP	Rounds a number up, away from zero
SERIESSUM	Returns the sum of a power series based on the formula
SIGN	Returns the sign of a number
SQRT	Returns a positive square root
SQRTPI	Returns the square root of (number * pi)
SUBTOTAL	Returns a subtotal in a list or database
SUM	Adds its arguments
SUMIF	Adds the cells specified by a given criteria
SUMPRODUCT	Returns the sum of the products of corresponding array components
SUMSQ	Returns the sum of the squares of the arguments
SUMX2MY2	Returns the sum of the difference of squares of corresponding values in two arrays
SUMX2PY2	Returns the sum of the sum of squares of corresponding values in two arrays
SUMXMY2	Returns the sum of squares of differences of corresponding values in two arrays
TRUNC	Truncates a number to an integer

12 Chapter 1

Of course there is no way to remember all these．Again however Excel makes the functions easy to use．There is an Insert Function（or Paste Function）button．

fx

Create a new heading in F1，LOGY，which will contain the natural logarithm of Y．All logs used in $P O E$ are natural logs．Highlight F2 and click Insert Function．

区 Microsoft Excel－Book1							
：通 Eile Edit View Insert Format Iools Data Window Help Adobe F							
F2 ${ }^{\text {戌 }}$							
	A	B	ThS r ，	D	E	F	（
1	Variable	X	Insert Function	Sum	Y2	LOGY	
2		1	2	3	4		
3		2	3	5	9		
4		3	6	9	36		
5		4	5	9	25		
6		5	7	12	49		
7	Sum	15	23				

The Insert Function dialog box opens．Type in a description of the function you want，and press Go．

Excel will return some suggestions．Scroll down the list and note that the definitions of the functions appear at the bottom．

Click OK. A Function Arguments dialog box opens. Enter the number you wish to take the logarithm of, or to locate a cell click on the Data range box.

With this box open select the cell C2. This enters the command =LN(C2) into F2. Press Enter.

	A	B	C	D	E	F	
1	Variable	X	Y	Sum	Y2	LOGY	
2		1	$\ldots 2$	3	4	=LN(C2)	
3		2	3	5	9		
4		3	6	9	Function Arguments		
5		4	5	9	C2		
6		5	7	12			
7	Sum	15	23				

Back in the Function Arguments dialog box we find that the natural \log of 2 is 0.693 . Click OK.

14 Chapter 1

The value is returned to the worksheet in F2. Once again we can Copy the formula to compute the natural \log of the remaining Y values.

E	F	
Y2	LOGY	
4	0.693147	
9		
36		
25		
49		

	A	B	C	D	E	F
1	Variable	X	Y	Sum	Y2	LOGY
2		1	2	3	4	0.693147
3		2	3	5	9	1.098612
4		3	6	9	36	1.791759
5		4	5	9	25	1.609438
6		5	7	12	49	1.94591
7	Sum	15	23			

Once you know the function you wish, you can of course just enter the formula into a cell and press Enter.

	A	B	C	D	E	F	G
1	Variable	X	Y	Sum	Y2	LOGY	
2		1	2	3	4	0.693147	
3		2	3	5	9	1.098612	
4		3	6	9	36	1.791759	
5		4	5	9	25	1.609438	
6		5	7	12	49	1.94591	
7	Sum	15	23			$=$ LN (C7) 8	

Now that you have put lots of effort into this example, it is a good idea to save your work. On the Excel Menu bar, select File/Save as

: 区 d $_{4}$	Eile	Edit View	Insert	Format	Iools	Data	Window	Hel	-
! -]	1	New... $\mathrm{Ctrl}+\mathrm{N}$ Open... $\mathrm{Ctrl}+\mathrm{O}$ Close						\checkmark	\triangle
引Aria									
		Save					$\mathrm{Ctrl}+\mathrm{S}$	F	
1		Save As...						LOG	
2								693	147
3								. 098	

In the resulting dialog box, find the folder in which you plan to save your work for POE. We will use the path c:Idatalexcel. The standard extension for Excel files is *.xIs. Name the file and click Save.

1.4 EXCEL FILES FOR PRINCIPLES OF ECONOMETRICS

The book Principles of Econometrics, 3e, uses many examples with data. These data files have been saved as workbooks and are available for you to download to your computer. There are about 150 such files. The data files and other supplementary materials can be downloaded from two web locations. You should download not only the *.xls files, but also the definition files, which have the extension *.def. Download these files from either the publisher John Wiley and Sons, or from the book website maintained by the authors.

1.4.1 John Wiley and Sons website

Using your web browser enter the address www.wiley.com/college/hill. Find, among the authors named "Hill" the book Principles of Econometrics.

Click on the book title and follow the link to Supplements. Click on Supplements. There you will find links to many supplement materials, including a link that will allow you to download all the data files at once.

1.4.2 Principles of Econometrics website

Alternatively, you may wish to download individual files.

- Go to the site www.bus.lsu.edu/hill/poe for the data, errata and other supplements.
- For the Excel data files go to www.bus.lsu.edu/hill/poe/excel.htm.

1.4.3 Definition files

There is a data definition file for each data file used in the book. These are simple "text" or "ASCII" files that can be opened with utilities like Notepad or Wordpad, or a word processor. Locate food.def. Its contents are:

```
food.def
food_exp income
    Obs: 40
    1. food_exp (y) weekly food expenditure in $
    2. income (x) weekly income in $100
    Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------------
    food_exp | 40 283.5735 112.6752 10 % 109.71 587.66
```

The definition files contain variable names, variable definitions, and summary statistics.

1.4.4 The food expenditure data

In the first few chapters you will use data on household food expenditure. Locate the file food.xls and open it. To illustrate, click on the Open icon on the Menu.

Navigate to the file you wish to open.

The worksheet should appear as

\＄Microsoft Excel－food．xls				
：产 Eile Edit View Insert Format Iool				
A2		－fx 115.220001		
	A	B	C	D
1	food exp	income		
2	115.22	3.69		
3	135.98	4.39		
4	119.34	4.75		
5	114.96	6.03		
6	187.05	12.47		
7	243.92	12.98		
8	267.43	14.2		
9	238.71	14.76		
10	295.94	15.32		

So as to not alter the original file，you may want to save the file with a new name，such as food＿chap01．xls．Select File＞Save As from the Excel Menu．

区 Microsoft Excel－food．xls							
：『9	Eile	Edit View	Insert	Format	Tools	Data	Window
		New．．． Open．．． Close					$\mathrm{Ctrl}+\mathrm{N}$
							Ctrl +O
		Save					$\mathrm{Ctrl}+\mathrm{S}$
12	Save As．．．			ns			
3	9tict	Save as Web Page．．．					

In the dialog box enter

File name：	food＿chap01．xls	\vee	Save
Save as type：	Microsoft Office Excel Workbook（＊．xls）	\vee	Cancel

Compute the summary statistics, to make sure they match the ones in food.def. Select Tools>Data Analysis.

In the resulting dialog box choose Descriptive Statistics, then OK.

In the Descriptive Statistics dialog box we must enter the Input Range of the data. Click on the Data Range box.

The following box will open.

While it is open, highlight columns A \& B, rows 1 to 41 . You can do this by

- Click A1, hold down left mouse button, and drag over desired area; or
- Click A1, hold down Ctrl+Shift. Press right arrow \rightarrow and then down arrow \downarrow.

In the resulting window click the Data Range box again.

Note that now the input range is filled in.

- The Excel data range is $\$ \mathrm{~A} \$ 1: \$ \mathrm{~B} \$ 41$. This range locates the upper left corner of the highlighted area (A1) and lower right corner (B41). The \$ makes this an Absolute Cell Reference, that will not be changed if the data are moved.
- Tick the box Labels in First Row so that these cells will not be treated as data.
- Select the radio button New Worksheet Ply and enter a name for the new worksheet page.
- Tick the box Summary Statistics so that Excel will print the results.

Click OK

The resulting worksheet is not formatted well. Select Format>Column>AutoFit Selection

20 Chapter 1

One of the nice things about Microsoft Office is that information from one application can be transferred to another. With the Descriptive Statistics highlighted, enter Ctrl+C to copy. In an open document enter $\mathbf{C t r l}+\mathbf{V}$ to paste.

Now you have a nice table of statistics in your document that can be edited in the usual way.

food_exp	income	
Mean	283.5734993 Mean	19.60475005
Standard Error	17.81551026 Standard Error	1.08272795
Median	264.479996 Median	20.0299995
Mode	\#N/A Mode	\#N/A
Standard Deviation	112.6751802 Standard Deviation	6.847772819
Sample Variance	12695.69623 Sample Variance	46.89199259
Kurtosis	-0.002430221 Kurtosis	0.48455582
Skewness	0.511465877 Skewness	-0.651185498
Range	477.949974 Range	29.710002
Minimum	109.709999 Minimum	3.69
Maximum	587.659973 Maximum	33.400002
Sum	11342.93997 Sum	784.190002
Count	40 Count	

You may wish to save this file by clicking

The food expenditure data will be used extensively in the next chapter.

CHAPTER

The Simple Linear Regression Model

CHAPTER OUTLINE

2.1 Plotting the Food Expenditure Data
2.4 Plotting the Least Squares Residuals
2.2 Estimating a Simple Regression
2.5 Prediction Using Excel
2.3 Plotting a Simple Regression

In this chapter we introduce the simple linear regression model and estimate a model of weekly food expenditure. We also demonstrate the plotting capabilities of Excel and show how to use the software to calculate the income elasticity of food expenditure, and to predict food expenditure from our regression results.

2.1 PLOTTING THE FOOD EXPENDITURE DATA

We will use Chart Wizard to scatter plot the data. Open food.xls file in Excel.

22 Chapter 2

Place the cursor on the Chart Wizard icon and click. In the dialog box, choose the chart type as XY (Scatter) and click next.

To define the Data Range, highlight the data after clicking on the space provided.

Select the data columns and click Data range again

> Source Data - Data range:
=Sheet11\$\$A\$1:\$B\$41|

Aside: Referencing Cells

Select Help. Search the phrase "Cell Reference." One of the resulting hits is

Click this link to find the following description of cell references:
A reference identifies a cell or a range of cells on a worksheet and tells Microsoft Excel where to look for the values or data you want to use in a formula. With references, you can use data contained in different parts of a worksheet in one formula or use the value from one cell in several formulas. You can also refer to cells on other sheets in the same workbook, and to other workbooks. References to cells in other workbooks are called links.

```
The A1 reference style
```

By default, Excel uses the A1 reference style, which refers to columns with letters (A through IV, for a total of 256 columns) and refers to rows with numbers (1 through 65536). These letters and numbers are called row and column headings. To refer to a cell, enter the column letter followed by the row number. For example, B2 refers to the cell at the intersection of column B and row 2 .

To refer to	Use
The cell in column A and row 10	A10
The range of cells in column A and rows 10 through 20	A10:A20
The range of cells in row 15 and columns B through E	B15:E15
All cells in row 5	$5: 5$
All cells in rows 5 through 10	$5: 10$
All cells in column H	$\mathrm{H}: \mathrm{H}$
All cells in columns H through J	$\mathrm{H}: J$
The range of cells in columns A through E and rows 10 through	A10:E20
20	

Reference to another worksheet In the following example, the AVERAGE worksheet function calculates the average value for the range B1:B10 on the worksheet named Marketing in the same workbook.

Note that the name of the worksheet and an exclamation point (!) precede the range reference.

Aside: Relative vs. Absolute References

On the same Help page, you will find the following useful information:
\boxminus The difference between relative and absolute references
Relative references A relative cell reference in a formula, such as A1, is based on the relative position of the cell that contains the formula and the cell the reference refers to. If the position of

24 Chapter 2

the cell that contains the formula changes, the reference is changed. If you copy the formula across rows or down columns, the reference automatically adjusts. By default, new formulas use relative references. For example, if you copy a relative reference in cell B2 to cell B3, it automatically adjusts from $=\mathrm{A} 1$ to $=\mathrm{A} 2$.

	A	B
1		
2		$=A_{1}$
3		$=A_{2}$

Copied formula with relative reference
Absolute references An absolute cell reference in a formula, such as $\$ A \$ 1$, always refer to a cell in a specific location. If the position of the cell that contains the formula changes, the absolute reference remains the same. If you copy the formula across rows or down columns, the absolute reference does not adjust. By default, new formulas use relative references, and you need to switch them to absolute references. For example, if you copy a absolute reference in cell B2 to cell B3, it stays the same in both cells $=\$$ A $\$ 1$.

	A	B
1		
2		$=\mp, \$ 1$
3		$=\mp, \$ 1$

Copied formula with absolute reference

2.1 (Continued)

Excel assumes that the first column is the X-variable. Select the Series tab.

On the Series tab define the columns that are X and Y variables again using the Data range box.

- Click Next.
- Add or modify labels and title and click Next.

- The default legend is not informative. To delete it go the Legend tab and uncheck box.

Chart Wizard - Step 3 of 4 - Chart Options ? X

- The last step is to place your chart. You can have the chart on the current worksheet or in a new one. Make your choice and click Finish.

Chart Wizard - Step 4 of 4 - Chart Locat... $? x$

If you chose to print it in a new worksheet, your plot will appear in the new worksheet.

To print a worksheet, first click on File/Page Setup.

There you can choose the page layout, either Portrait or Landscape, and adjust the size. The Print Preview allows you to see what will be printed before actually doing so, which saves time and paper.

Click on File/Print to open the print dialog window. In the Print dialog box, make sure the printer is correctly specified. Here you can specify Print range, pages to be printed etc.

Alternatively, if the Print Preview is satisfactory, click on the printer icon on the main toolbar.

If you are creating a document, click inside the graph and enter $\mathbf{C t r l}+\mathbf{C}$ which copies the figure into the "clipboard." Transfer to an open document, place the cursor in the document where you want the figure and enter $\mathbf{C t r l}+\mathbf{V}$ to paste the figure into the document, where it can be resized by dragging a corner inward. Give it a try.

2.2 ESTIMATING A SIMPLE REGRESSION

To estimate the parameters b_{1} and b_{2} of the food expenditure equation, place cursor in an empty cell and click on Tools/Data Analysis.

The Data Analysis tool may not automatically load with a default installation of the program, if Data Analysis tool doesn't appear on the menu, click on Add-Ins under Tools:

Check the box next to the Analysis ToolPak add-in and click OK.

Data Analysis should now appear in the Tools menu, and you should not have to run the add-ins again for this option.

When the Data Analysis dialog box appears, click on Regression, then OK.

The Regression dialog box will appear with lots of user-defined inputs and options.

To define the input ranges, first click on the Input \underline{Y} Range box. The box will minimize. Highlight the data in the y column, including the label. Do the same procedure to input the \underline{X} Range.

Other options:

- Don't forget to check the Label box if you are including labels.
- Do not check the Constant is Zero box. This would suppress the intercept.
- The output can be sent to the current page or another page in the workbook. Name the new worksheet Food Expenditure and hit Enter.

Since you chose to place the output in a separate worksheet, a new worksheet will appear as a tab in the lower left corner of the work area. If you click on the Food Expenditure tab, you will
notice that the columns are not wide enough to show the cells completely. Highlight the data, or the entire sheet, and click on Format/Column/Autofit Selection.

The output contains many items that you will learn about later. For now it is important to note that the Coefficients corresponding to Intercept and income are the least squares estimates b_{1} and b_{2}.

2.3 PLOTTING A SIMPLE REGRESSION

In order to plot the regression function we must re-estimate the food expenditure equation and choose the Line Fit Plots option in the regression dialog box.

Click OK. The graph will be produced, and placed on the same worksheet as the regression output. If you can't find it on the worksheet, click on the File/Print Preview or click on the Print Preview icon and look for it.

You will need to enhance your graph. Here are a few suggestions:

- Right click on the legend and delete, if desired.

- Left click once on the title to highlight it. Left click once more to edit. Name appropriately. If you double click the box surrounding the title, a dialog box opens that allows you more formatting options.

Repeat for the Y and X axes if you want to change the names of the variables.
Notice that both the actual values of Y and the predicted values are plotted. To include the estimated regression function, place the cursor over one of the predicted Y points (the pink ones) until the caption "Series Predicted Y" appears.

Right Click and choose Add Trendline.

Under the Type tab, choose Linear.

Under the Options tab, check the box next to Display equation on chart. Click OK.

If your figure is small, and begins to get cluttered, increase its size by clicking inside the border. Place the mouse arrow over the black square in the corner, until a double arrow appears. Then drag the mouse, with the left button held down, to increase (or decrease) the figure size.

Your figure should look something like the one below.

2.4 PLOTTING THE LEAST SQUARES RESIDUALS

The least squares residuals are defined as

$$
\hat{e}_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{1}-b_{2} x_{i}
$$

In order to plot the least squares residuals, we must re-estimate the food expenditure equation and choose the Residual Plots option in the regression dialog box.

If you wish to enhance your graph, you can do so by right clicking on chart area or plot area.

2.5 PREDICTION USING EXCEL

Obtaining predicted values from an estimated regression function can be done either by doing the computations or using the TREND function.

Insert a new worksheet to the workbook select Insert/Worksheet on the main menu.

: 区id Eile Edit View	Insert Format Ioc
	Rows
:Arial	Columns
F34	Worksheet
A B	$\stackrel{\square}{2}$

Rename the worksheet Predictions by right clicking on the tab.

In the Predictions worksheet, create a template for prediction by copying the estimated coefficients from the regression and labeling them appropriately. Enter the income value for which you want to predict food expenditures. Create the formula for the predicted value of y, $\hat{y}=b_{1}+b_{2}$ Income , using the cell references.

	A	B	C
1	Predicted Food Expenditure		
2			
3	b 1	83.41600202	
4	b 2	10.20964297	
5	Income	20	
6	Yhat	$=\mathrm{B} 3+\left(\mathrm{B} 4^{*} \mathrm{~B} 5\right)$	
7			
8			

The results in cell B6 will be 287.6088614.

	A	B	C
1	Predicted Food Expenditure		
2			
3	b1	83.41600202	
4	b2	10.20964297	
5	Income	20	
6	Yhat	287.6088614	
7			
8			

Excel has a built in function that computes predicted values from simple regressions. The form of the Trend function is

38 Chapter 2

The value x_{0} is the value at which the prediction is desired. To use this function, return to the worksheet page containing the data. Type in the following command,

	A	B	C	D	E	F	G
1	Food Exp	Income		Yhat			
2	115.22	3.69		=TREN	,		
3	135.98	4.39					
4	119.34	4.75					
5	114.96	6.03					
6	187.05	12.47					
7	243.92	12.98					
8	267.43	14.2					
9	238.71	14.76					
10	295.94	1537					

The result will be in cell D2.

D2		$f_{x}=\operatorname{TREND}(\mathrm{A} 2: \mathrm{A} 41, \mathrm{~B} 2: \mathrm{B} 41,20)$				
	A	B	C	D	E	F
1	Food_Exp	Income		Yhat		
2	115.22	3.69		287.6088614		
3	135.98	4.39				
4	119.34	4.75				
5	114.96	6.03				
6	187.05	12.47				
7	243.92	12.98				
\bigcirc	า18.7 12	147				

As a final step, save your file. We recommend saving it under a new name, like food_chap02.xIs, so that the original data file will not be altered.

CHAPTER 3

Interval Estimation and Hypothesis Testing

CHAPTER OUTLINE

3.1 Interval Estimation
3.1.1 Automatic interval estimates
3.1.2 Constructing interval estimates

> 3.2 Hypothesis Testing
> 3.2.1 Right-Tail tests
> 3.2.2 Left-Tail tests
> 3.2.3 Two-Tail tests

In this chapter we continue to work with the simple linear regression model and our model of weekly food expenditure.

3.1 INTERVAL ESTIMATION

For the regression model $y=\beta_{1}+\beta_{2} x+e$, and under assumptions SR1-SR6, the important result that we use in this chapter is given by

$$
t=\frac{b_{k}-\beta_{k}}{\operatorname{se}\left(b_{k}\right)} \sim t_{(N-2)} \quad \text { for } k=1,2
$$

Using this result we can show that the interval $b_{k} \pm t_{c} s e\left(b_{k}\right)$ has probability $1-\alpha$ of containing the true but unknown parameter β_{k}, where the "critical value" t_{c} from a t-distribution such that $P\left(t \geq t_{c}\right)=P\left(t \leq-t_{c}\right)=\alpha / 2$

3.1.1 Automatic interval estimates

To construct the confidence interval estimates, we will use the Regression function in Excel. To do that, open the workbook containing the food expenditure regression that we considered in

Chapter 2. Excel provides 95% confidence interval for the Least Squares estimates by checking the Confidence Level box in the Regression Dialog box.

Excel will report the confidence interval in the Summary Output next to the coefficient estimates. The results show the lower and upper values for the 95% confidence interval for the coefficient estimates.

To have Excel calculate a different confidence interval, estimate a regression, and after checking the Confidence Level box, type in the desired level, for example, 98 for 98% confidence interval.

3.1.2 Constructing interval estimates

While using the automatic interval estimation feature in Excel is the quickest and easiest way to obtain interval estimates, a general template can be created for calculating interval estimates.

To construct the interval estimates we require the least square estimates b_{k}, their standard errors $\operatorname{se}\left(b_{k}\right)$ and the critical value for t-distribution, t_{c}. We already know we can find the least squares estimates b_{k}, their standard errors $\operatorname{se}\left(b_{k}\right)$ in summary output. We also need to find values t_{c}, such that $\alpha / 2$ of the probability is in either tail. As an example, the critical values that mark off $\alpha / 2=.025$ of the probability in each tail of a t-distribution with 38 degrees of freedom. Checking Table 2 at the front of your book, we find that the value is $t_{c}=2.024$ on the positive side and, using the symmetry of the t-distribution, -2.024 on the negative side. Excel makes it easy to compute critical values from the t-distribution using the TINV function.

To generate 95% confidence interval, first open the workbook containing the food expenditure regression and insert a worksheet. Move the cursor over the tab with the default name, right click, and rename the sheet \boldsymbol{t}-values.

14 • \rightarrow t-values / Food Expenditure
Ready

Go to the newly created worksheet and select a cell. Click on the drop down menu next to Sum (Σ).

Find TINV from the Statistical Function category, and click OK.

In case you don't see Statistical Function on your menu, choose More Functions. Then, find TINV from the Statistical Function category, and click OK.

Alternatively, click on the Paste or Insert Function (\boldsymbol{f}_{*}) icon to open up the same search.

Either way, in the TINV dialog box, fill in the box as shown below.

The Probability value you need to fill in is the α in two-tails of the t-distribution. Enter the degrees of freedom, 38, and click OK. The resulting value, 2.024394147 will appear in your worksheet when you click OK.

We can now create a Confidence Interval Template. Cells with bold border require user input, some obtained from the regression results.

	A		B
1	Interval Estimation in Simple Regression		
2			
3	Data Input		
4		Sample Size	
5		Confidence Level	
6		Least Square Estimate	
7		Standard Error	
8	Computed Values		
9			$\mathrm{f}=\mathrm{B} 4-2$
10			$\mathrm{t}=\mathrm{TINV}$ (1-B5, B4-2)
11		half-width	=B10*B7
12	Confidence Interval		
13		Lower Limit	$\mathrm{t}=\mathrm{B6}-\mathrm{B} 11$
14		Upper Limit	$\mathrm{t}=\mathrm{B} 6+\mathrm{B} 11$

Once you have the worksheet, the Least Squares Estimates and the Standard Error values can be typed in, or can be copied from the regression results on the food expenditure worksheet.

	A		B
1	Interval Estimation in Simple Regression		
2			
3	Data Input	Sample Size	
4		Confidence Level	40
5		Least Square Estimate	10.2096425
6	Standard Error	2.093263461	
7			
8	Computed Values	df	
9		t	38
10		half-width	2.024394147
11		Lower Limit	4.237590298
12	Confidence Interval	Upper Limit	5.972052202
13			14.4472328
14			

3.2 HYPOTHESIS TESTING

Inference in the linear regression model includes tests of hypotheses about parameters which also depend upon Student's t-distribution. One- or two-tail general tests can be calculated by methods similar to the confidence interval construction. The required ingredients are results from the least squares estimation and the ability to use the Excel functions TINV and TDIST.

3.2.1 Right-Tail tests

To test the hypothesis $H_{0}: \beta_{2}=0$ against the alternative that it is positive (>0), as described in Chapter 3.4.1a of $P O E$, we use a one-tail significance test. For this purpose, we must compute the value of the critical values that define the rejection region, the test statistic and the p-value of the test.

- If we choose the $\alpha=.05$ level of significance, the critical value is the $95^{\text {th }}$ percentile of the $t_{(38)}$ distribution which can be computed by the TINV function discussed earlier. $\operatorname{TINV}(0.10,38)=1.685954461$. The value returned is the right tail critical value. Beware that the Excel function TINV(probability, degrees of freedom) returns the value such that the area in the two-tails of the $t(d f)$ distribution equals the given probability value. Thus if we want a critical value such that $\alpha=.05$ is in the right tail, we must provide the TINV function with probability $=.10$.
- The test statistic is the ratio of the estimate b_{2} to its standard error, $\operatorname{se}\left(b_{2}\right)$.
- For the p-value, we use the TDIST function where the amount of probability in the righttail of a t-distribution with 38 degrees of freedom can be computed. To obtain this value, we find TDIST from the Statistical Function category under either Sum drop down menu, or Paste Function.

This work can be simplified by using a template that can be used when needed.

	A	B
1	Right Tailed Test for Simple Regression Model	
2	Data Input	
3	Sample Size	
4	Estimate	
5	Standard Error	
6	Ho	
7	Alpha	
8	Computed Values	
9	df	=B3-2
10	t	$=(\mathrm{B} 4-\mathrm{B6}) / \mathrm{B} 5$
11	Right-Tail Test	
12	Right Critical Value	$=\operatorname{TINV}$ (2*B7, ${ }^{\text {a }}$)
13	Decision	$=1 F(B 10>=B 16$, "Reject Ho","Do Not Reject Null")
14	p-value	$=\mathrm{IF}(\mathrm{B} 10>0, \mathrm{TDIST}(\mathrm{B} 10, \mathrm{B9}, 1), 1-\mathrm{TDIST}(\mathrm{ABS}(\mathrm{B} 10), \mathrm{B9}, 1))$
15		
16		
17	Right Tailed Test for Simple Regression Model	
18	Data Input	
19	Sample Size	40
20	Estimate	10.2096425
21	Standard Error	2.093263461
22	Ho	0
23	Alpha	0.05
24	Computed Values	
25	df	38
26	t	4.877380554
27	Right-Tail Test	
28	Right Critical Value	1.685954461
29	Decision	Reject Ho
30	p-value	$9.72931 \mathrm{E}-06$
31		

The t-statistic value 4.8773 falls in the rejection region, and p-value is less than the level of significance α, thus we reject this null hypothesis.

Right Tailed Test for Simple Regression Model	
Data Input	
Sample Size	40
Estimate	10.2096425
Standard Error	2.093263461
Ho	$1>5$
C $\} \quad$ Alpha	
Computed Values	
df	38
t	2.488765794
Right-Tail Test	
Right Critical Value	1.685954461
Decision	Reject Ho
p-value	0.008658183

To test an economic hypothesis such as $H_{0}: \beta_{2} \leq 5$ against $H_{1}: \beta_{2}>5$, the same steps are followed except for the construction of the t-statistic. This can be accomplished by replacing the 0 with 5 in our template.

The t-statistic value 2.4887 falls in the rejection region, and p-value is smaller than the level of significance α, thus we reject this null hypothesis.

3.2.2 Left-Tail tests

To test the significance, we test $H_{0}: \beta_{2} \geq 0$ against $H_{1}: \beta_{2}<0$. The value of the t-statistic for this null and alternative hypothesis is the same as for a right-tailed test.

- If we choose the $\alpha=.05$ level of significance, the critical value is the $5^{\text {th }}$ percentile of the $\mathrm{t}_{(38)}$ distribution which can be computed by the TINV function discussed earlier.
$-\operatorname{TINV}(0.10,38)=-1.685954461$. The value returned is the right tail critical value.
- The test statistic is the ratio of the estimate b_{2} to its standard error, $\operatorname{se}\left(b_{2}\right)$.
- The p-value, is the area to the left of the calculated t-statistic.

Let's plug in the left tail values into our template:

	A	B
1	Left Tail Test for Simple Regression Model	
2	Data Input	
3	Sample Size	
4	Estimate	
5	Standard Error	
6	Ho	
7	Alpha	
8	Computed Values	
9	df	= B3-2
10	t	$=(\mathrm{B} 4-\mathrm{B} 6) / \mathrm{B} 5$
11	Left-Tail Test	
12	〔 Left Critical Value	$=-\mathrm{TIN} V(2 * B 7, \mathrm{B9})$
13	Decision	=IF(B10<=B12,"Reject Ho","Do Not Reject Null")
14	p-value	$=\mathrm{FF}(\mathrm{B} 10<0, \operatorname{TDIST}(\mathrm{ABS}(\mathrm{B} 10), \mathrm{B9}, 1), 1-\mathrm{TDIST}(\mathrm{ABS}(\mathrm{B10}), \mathrm{B9}, 1))$
15		
16	Left Tail Test for Simple Regression Model	
17	Data Input	
18	Sample Size	40
19	Estimate	10.2096425
20	Standard Error	2.093263461
21	Ho	0
22	Alpha	0.05
23	Computed Values	
24	df	38
25	t	4.877380554
26	Left-Tail Test	
27	Left Critical Value	-1.685954461
28	Decision	Do Not Reject Null
29	p-value	0.999990271

To test the null hypothesis that $\beta_{2} \geq 12$ against the alternative $\beta_{2}<12$, we use the template and plug in the input numbers. The t-statistic value -1.6859 does not fall in the rejection region, and p-value is greater than the level of significance α, thus we fail to reject this null hypothesis.

Left Tail Test for Simple Regression Model	
Data Input	
Sample Size	40
Estimate	10.2096425
Standard Error	2.093263461
H0	12
Alpha	0.05
Computed Values	
df	38
t	-0.85529487
Left-Tail Test	
Left Critical Value	-1.685954461
Decision	Do Not Reject Null
p-value	0.198874343

3.2.3 Two-Tail tests

For the two tail test of the null hypothesis that $\beta_{2}=0$ against the alternative that $\beta_{2} \neq 0$ the same steps are taken. We can plug the necessary information into the template.

§ Microsoft Excel - food.xls		
	File Edit Yiew Insert Format Iools Data	Window Help Adobe PDF
	$f_{x}=I F(O R(B 10<=-B 20, B 10>=B 20), " R e j e c t ~ H o ", " D o ~$	
A		B
1	Two Tail Test for Simple Regression Model	
2	Data Input	
3	Sample Size	
4	Estimate	
5	Standard Error	
6	Ho	
7	Alpha	
8	Computed Values	
9	$\mathrm{df}=\mathrm{B} 3-2$	
10	$\mathrm{t}=(\mathrm{B} 4-\mathrm{B6}) / \mathrm{B} 5$	
11	Two-Tail Test	
12	Absolute Critical Value $=$ TINV $(\mathrm{B} 7, \mathrm{~B} 9)$	
13	Decision Reject H0	
14	p-value $=$ TDIST(ABS(B10), B9,2)	
15		
16	Two Tail Test for Simple Regression Model	
17	Data Input	
18	Sample Size	40
19	Estimate	10.2096425
20	Standard Error	2.093263461
21	Ho	0
22	Alpha	0.05
23	Computed Values	
24	df	38
25	t	4.877380554
26	Two-Tail Test	
27	Absolute Critical Value	2.024394147
28	Decision	Reject Ho_{0}
29	p-value	1.94586E-05

Since the t-statistic value 4.8773 falls in the rejection region, and p-value is smaller than the level of significance α, thus we reject this null hypothesis. This test is also carried out by Excel within the Regression Summary Output labeled t-Statistic and p-value.

	Coefficients	Standard Error	t Stat	P-value
Intercept	83.41600997	43.41016192	1.921577951	0.062182379
Income	10.2096425	2.093263461	4.877380554	$1.94586 \mathrm{E}-0.0$

To test the null hypothesis that $\beta_{2}=12.5$ against the alternative $\beta_{2} \neq 12.5$, we use the two-tailed test template and plug in the input numbers. The t-statistic value -1.6859 does not fall in the rejection region, and p-value is greater than the level of significance α, thus we fail to reject this null hypothesis.

48 Chapter 3

Two Tail Test for Simple Regression Model	
Data Input	
Sample Size	40
Estimate	10.2096425
Standard Error	2.093263461
Ho	12.5
Alpha	0.05
Computed Values	
df	38
t	-1.094156346
Two-Tail Test	
Absolute Critical Value	2.024394147
Decision	Reject Ho
p-value	0.280773757

CHAPTER 4

Prediction, Goodness-of-Fit, and Modeling Issues

CHAPTER OUTLINE

4.1 Prediction for the Food Expenditure Model
4.1.1 Calculating the standard error of the forecast
4.1.2 Prediction interval
4.2 Measuring Goodness-of-Fit
4.2.1 R^{2}
4.2.2 Covariance and correlation analysis
4.3 Residual Diagnostics
4.3.1 The Jarque-Bera test

4.1 PREDICTION IN THE FOOD EXPENDITURE MODEL

We have already illustrated how to obtain the predicted values for the food expenditure for a household in Chapter 2. In this chapter, we will calculate the standard error of the forecasted value and construct a prediction interval.

4.1.1 Calculating the standard error of the forecast

Recall from Section 2.6 of this manual, the forecasted value of household food expenditure for a household with income of $\$ 2000$ per week is calculated as $\$ 287.6088614$. Now, we will compute the standard error of the forecasted value where forecast error is calculated as

$$
f=y_{0}-\widehat{y}_{0}=\left(\beta_{1}+\beta_{2} x_{0}+e_{0}\right)-\left(b_{1}+b_{2} x_{0}\right)
$$

The estimated variance for the forecast error is

$$
\operatorname{var}(f)=\hat{\sigma}^{2}\left[1+\frac{1}{N}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\Sigma\left(x_{i}-\bar{x}\right)^{2}}\right]=\hat{\sigma}^{2}+\frac{\hat{\sigma}^{2}}{N}+\left(x_{0}-\bar{x}\right)^{2} \operatorname{var}\left(b_{2}\right)
$$

And the square root of the estimated variance is the standard error of the forecast.

$$
\operatorname{se}(f)=\sqrt{\operatorname{var}(f)}
$$

To calculate the forecast error for the food expenditure data, open the food.xls file. In addition to the summary regression output (see Section 2.3 of this manual), we will need the sample mean of income. To obtain the sample mean of income select Tools/Data Analysis and from the menu choose Descriptive Statistics.

In the dialog window specify the data range and ask for summary statistics.

Descriptive Statistics		x
Input Input Range: Grouped By: \square Labels in First Row	Columns Rows	Lek Cancel Help
Output options Qutput Range: New Worksheet Ply: New Workbook Summary statistics Confidence Level for Mean: Kth Largest: Kth Smallest:		

Excel will provide the univariate summary statistics for Food Expenditure and Income variables. We will use the mean of income and sample size in the calculation of the standard error of the forecast.

区 Microsoft Excel－food．xls				
（这 File Edit yiew Insert Format Iools Data Window Help Add				
C18 $\quad f_{x}$				
	A	B	C	D
1	Food Exp		Income	
2				
3	Mean	283.5734993	Mean	19.60475
4	Standard Error	17.81551026	Standard Error	1.082728
5	Median	264.479996	Median	20.03
6	Mode	\＃\＃$/$／	Mode	剘／A
7	Standard Deviation	112.6751802	Standard Deviation	6.847773
8	Sample Variance	12695.69623	Sample Variance	46.89199
9	Kurtosis	－0．002430221	Kurtosis	0.484556
10	Skewness	0.511465877	Skewness	－0．65119
11	Range	477.949974	Range	29.71
12	Minimum	109.709999	Minimum	3.69
13	Maximum	587.659973	Maximum	33.4
14	Sum	11342.93997	Sum	784.19
15	Count	40	Count	$\underline{40}$
16				

Now，we can go back to Regression Output，and plug in the necessary numbers into our formula and calculate the standard error of the forecast．Recall from above that the formula is

$$
\operatorname{var}(f)=\hat{\sigma}^{2}\left[1+\frac{1}{N}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\Sigma\left(x_{i}-\bar{x}\right)^{2}}\right]=\hat{\sigma}^{2}+\frac{\hat{\sigma}^{2}}{N}+\left(x_{0}-\bar{x}\right)^{2} \operatorname{var}\left(b_{2}\right)
$$

and

$$
\operatorname{se}(f)=\sqrt{\operatorname{var}(f)}
$$

The formula indicates that，the farther x_{0} is from the sample mean \bar{x} ，the larger the variance of the prediction error，the smaller the sample size，the larger the forecast error and the less reliable the prediction is likely to be．

52 Chapter 4

§ Microsoft Excel - food.xls					
产 File Edit Yiew Insert Format Iools Data window Help Adobe PDF					
	A	B	C	D	E
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	1	190626.9788	190626.9788	23.78884107
13	Residual	38	304505.1742	8013.294058	
14	Total	39	495132.153		$\xrightarrow{ }$
$15 \longrightarrow$					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	83.41600997	43.41016192	1.921577951	0.062182379
18	Income	10.2096425	2.093263461	4.877380554	$1.94586 \mathrm{E}-05$
19					
20					
	INCOME	SE of forecast			
22	20.0000	90.6328			
23 24	25.0000	104.6529			
	30.0000	110.2597			

To calculate the standard error of the forecast for x_{0}, we will need the σ^{2} which is the Mean Squared Residual (MSR) from cell D13 in the ANOVA table, the $\operatorname{var}\left(b_{2}\right)$ which is the square of the standard error of income from cell C18 and x_{0} which is $\$ 2000$. Once we type in the formula, it is possible to make the same calculation for different values of income.

4.1.2 Prediction interval

We construct a $100(1-\alpha) \%$ prediction interval as

$$
\hat{y}_{0} \pm t_{c} \operatorname{se}(f)
$$

Since forecasted value and the standard error of forecast have been already calculated, constructing the confidence interval is very straightforward. Recall that we can obtain the t_{c} values as shown in Section 3.1.2 and the forecasted values in Section 2.6 of this manual.

З Microsoft Excel - food.xls						
:区] Eile Edit Yiew Insert Format Iools Data window Help Adobe PDF						
C22 $\quad f_{x}=+D 22-2.02439416391 * B 22$						
	A	B	C	D	E	
9						
10	ANOVA					
11		$d f$	SS	MS	F	ignis
12	Regression	1	190626.9788	190626.9788	23.78884107	1
13	Residual	38	304505.1742	8013.294058		
14	Total	39	495132.153			
15						
16		Coefficients	Standard Error	t Stat	P-value	Low
17	Intercept	83.41600997	43.41016192	1.921577951	0.062182379	-4
18	Income	10.2096425	2.093263461	4.877380554	1.94586E-05	5.
19						
20						
21	INCOME	SE of forecast	Lower Bound	Forecasted Value	Upper Bound	
22	20.0000	90.6328	104.1322	287.6088	471.0854	
23	25.0000	104.6529	> 126.7985	338.6571	550.51	
24	30.0000	110.2597	166.4962	389.7053	612.9144	

We can also create a worksheet, name it predictions and calculate standard error of forecast and the prediction intervals for specified values of income.

4.2 MEASURING GODDNESS-OF-FIT

The ANOVA table in the regression output provides the goodness-of-fit measures.

4.2.1 Calculating R^{2}

In the simple regression model, the R^{2} is the square of the sample correlation between the x and y variables. It is calculated as $R^{2}=S S R / S S T=1-S S E / S S T$ is reported in standard regression output.

4.2.2 Covariance and correlation analysis

The covariance and correlation can tell us about the linear relationship between two variables, a primary concern of linear regression. Specifically, the covariance tells us the direction of the linear relationship, while the correlation is a measure of the strength (and direction) of the linear relationship. Multiple \mathbf{R}, in the simple regression output, gives us the square root of R^{2} which is the correlation between x and y.

\$ Microsoft Excel - food.xls		
:这 File Edit Yiew Insert Format Io,		
$\mathrm{B} 22 \quad$ - $\mathrm{f}_{x}=\operatorname{SQRT}\left(\mathbb{S D} \$^{\prime}\right.$		
	A	B
1	SUMMARY OUTPUT	
2		
3	Regression Statistics	
4	Multiple R	0.620485472
5	R Square	0.385002221
6	Adjusted R Square	0.368818069
7	Standard Error	89.51700429
8	Observations	40

A more general way to calculate covariance and correlation can be achieved by utilizing the Data Analysis under the Tools menu.

The sample correlation coefficient, r, measures the direction and strength of the linear relationship between two variables and is between -1 and 1 . To obtain the sample correlation coefficient, choose correlation from the Tool/Data Analysis menu and click OK. The Correlation dialog box will appear. Fill in the appropriate input range and be sure to check the Labels in First Row box since labels are included. Place the output on a new worksheet named Correlation and click OK.

The correlations are:

The results will appear in the new worksheet, Correlation. You may need to format the worksheet by choosing Format/Column/AutoFit Selection. The estimated correlation between food expenditures and weekly income is 0.620485 which is the value given as Multiple \mathbf{R} in the regression output summary. Values on the diagonal of the correlation matrix will always equal 1 .

56 Chapter 4

To find the sample covariance matrix, click on Tool/Data Analysis menu again and highlight Covariance and click OK.

The Covariance dialog box will appear. Fill in the appropriate input range and be sure to check the Labels in First Row box since labels are included. Place the output on a new worksheet named Covariance and click OK.

The covariance matrix will appear on the new worksheet, but needs to be formatted. Choose Format/Column/Auto Fit Selection.

The diagonal elements of the covariance matrix are the estimated sample variances. The covariance between food expenditures and weekly income is positive, suggesting a positive linear
relationship. The value of the covariance, 466.7817 , does not, however, tell you the strength of that linear relationship.

4.3 Residual Diagnostics

Every time a regression model is estimated, certain regression diagnostics need to be carried out. By analyzing the residuals of the fitted model, we may be able to detect model specification problems. A histogram of the residuals can suggest the distribution of the errors, and the JarqueBera test statistic can be used to formally test for normality. Both of these functions are important since hypothesis testing and interval estimations are based on distributional assumptions.

In order to create a histogram of the residuals, we need to rerun the food expenditures model and choose the Residuals output option.

Excel will provide the residuals for each observation, in addition to the standard Regression output. Examine the values of the residuals, noting the lowest and highest values. Create a BIN column next to the residuals column and determine the category values for the histogram. In this column, enter the values $-250,-200,-150,-100,-50,0,50,100,150,200$ and 250.

RESIDUAL OUTPUT			
Observation	Predicted Food Exp	Residuals	BINS
1	121.0895846	-5.869584573	-250
2	128.2363347	7.743665349	-200
3	131.9118061	-12.57180612	-150
4	144.9801491	-30.02014912	-100
5	210.7302498	-23.68024983	-50
6	215.9371677	27.98283225	0
7	228.3929322	39.03706783	50
8	234.1103322	4.59966777	100
9	239.8277323	56.11226771	150
10	250.7520503	67.02794973	200
11	260.5533075	-44.55330752	250

Once you have entered the BIN column, choose Tools/Data Analysis/Histogram from the menu bar, and click OK.

The Histogram dialog box will appear.

22	RESIDUAL OUTPUT								
23									
24	Obsenvation	cted Food	Residuals		Histogram				X
25	1	121.0896	-5.869589792	-250					
26	2	128.2363	7.743655458	-200	Input Input Range: Bin Range:	\$C\$25:\$C\$64	Ex:	OK	
27	3	131.9118	-12.57181584	-150		\$C.\$25:\$-q64		Cancel	
28	4	144.9802	-30.02015524	-100		\$D\$25:\$D\$35	埾:		
29	5	210.7303	-23.68024894	-50	\square Labels			Help	
30	6	215.9372	27.98282839	0	\square Labels				
31	7	228.3929	39.03705954	50	Output options				
32	8	234.1103	4.599673736	100	Output Range:New Worksheet Ply:		E=		
33	9	239.8277	56.11226894	150					
34	10	250.752	67.02795867	200		Histogram			
35	11	260.5533	-44.55330734	250	O New Whorkbook				
36	12	264.8414	-24.49135119		\square Pareto (sorted histogram)				
37	13	266.4749	120.095107		Cumulative PercentageChart Output				
38	14	271.5797	-10.04972224						
39	15	272.8049	-23.46487213						
40	16	275.3573	34.51271625			$\xrightarrow{-2}$			
41	17	275.4594	70.43063982						

Fill in the data ranges, by highlighting the residuals for the Input Range, and highlight the values created in the BIN column for the Bin Range. Place the output on a new worksheet called Histogram. After checking the Chart Output box, click OK.

The Bin values and Frequencies appear, along with the histogram. Format the histogram graph as needed. (Remove legend, resize, rename title, etc). The residuals seem to be centered around zero, but the symmetry of the distribution seems questionable.

4.3.1 Jarque-Bera test for normality

A formal test of normality, the Jarque-Bera test, uses skewness and kurtosis, which can be easily estimated with Excel.

As discussed earlier in Section 4.1.1, Excel has a tool for calculating the Descriptive Statistics, which can be found on the Tools/Data Analysis menu. Skewness and kurtosis can also be found among the statistics calculated.

Skewness is a measure of asymmetry of a distribution about its mean. For a sample $x_{1}, x_{2}, \ldots, x_{T}$ an empirical measure of skewness is

$$
S=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{3} / T}{\sigma_{x}^{3}}
$$

where

$$
\sigma_{x}=\sqrt{\frac{1}{T} \sum_{i=1}^{T}\left(x_{i}-\bar{x}\right)^{2}}
$$

Kurtosis measures the peakedness, or flatness, of a distribution. An empirical measure of Kurtosis is

$$
K=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{4} / T}{\sigma_{x}^{4}}
$$

In the case of the least squares residuals, \hat{e}, the formulas simplify because $\sum_{i=1}^{T} \hat{e}_{i}=0$, making $\overline{\hat{e}}=0$. Thus the formulas for skewness and kurtosis of the least squares residuals are

$$
S=\frac{\sum \hat{e}_{i}^{3} / T}{\tilde{\sigma}^{3}}, K=\frac{\sum \hat{e}_{i}^{4} / T}{\tilde{\sigma}^{4}}
$$

respectively where

$$
\tilde{\sigma}=\sqrt{\frac{1}{T} \sum_{i=1}^{T} \hat{e}_{i}^{2}}
$$

Skewness measures the symmetry of the data, a value of zero indicating perfect symmetry. Kurtosis refers to the "peakedness" of the distribution, with a value of 3 for a normal distribution. Using these measures, the test statistic for the Jarque-Bera test for normality is

60 Chapter 4

$$
J B=\frac{T}{6}\left(S^{2}+\frac{(K-3)^{2}}{4}\right)
$$

where S is skewness and K is kurtosis. This test statistic follows a chi-square distribution with 2 degrees of freedom. Below is preparation of the worksheet for this calculation for the food expenditures model.

Return to the worksheet containing the regression results and the residuals. Copy the column containing the least squares residuals to a new worksheet and create three additional columns and label them 'ehatsquared', 'ehatcubed' and 'ehat to the fourth'. The formulas for these functions are $\wedge 2, \wedge 3$ and $\wedge 4$ respectively and is illustrated in the below figure. Once you copy the formulas down the columns, you will be in a position to compute the S, K and $J B$ statistics. With formulas showing, this portion of the worksheet should look like

	A	B	C	D	E	F	G
1	Residuals	ehat-squared	ehatcubed	ehat to the fourth	NORMALITY TEST		
2	-5.869589792	$=+A 2^{\prime 2}$	$=+\mathrm{A} 2^{\wedge} 3$	$=+\mathrm{A} 2^{\wedge} 4$	sigmatilda-square	$=+$ SUM $(\mathrm{B} 2: \mathrm{B41}) / 40$	
3	7.743655458	$=+A 3^{\wedge} 2$	$=+83 \times 3$	$=+A 3 \wedge 4$	sigmatilda	=+SQRT(F2)	
4	-12.57181584	$=+4^{\wedge} 2$	$=+$ A4 3	$=+\mathrm{A} 4^{\wedge} 4$	Skewness	=SUM(C2:C41)/(40*	
5	-30.02015524	$=+\mathrm{A} 5^{\wedge} 2$	$=+$ A5 3	$=+\mathrm{A} 5^{\wedge} 4$	Kurtosis	$=S U M(\mathrm{D} 2: \mathrm{D} 41) /(40 *$	
6	-23.68024894	$=+A \sigma^{2} 2$	$=+A \sigma^{n} 3$	$=+A \sigma^{4} 4$	JB	$=+(40 / 6) *$ (F4^2+((F5-3)	2)/4)
7	27.98282839	$=+A 7^{\wedge} 2$	$=+\mathrm{Al}^{\wedge} 3$	$=+\mathrm{Al}^{\wedge} 4$	p-value	= CHIDIST(F6,2)	

4.4 MODELING ISSUES

4.4.1 Scaling the data

Change the scale of the variables can easily be done on the worksheet containing the data. Label the empty column to the right of the independent variable INCOME*. In the first empty cell of this column, type $=\mathbf{B 2} \mathbf{* 1 0 0}$. Copy the formula down the column.

:包 Eile Edit Yiew Insert Format Iools Data				
\% \% \% \%				
C2		f	=+B2*100	
	A	B	C	
1	Food_Exp	Income	Income*	
2	115.220001	3.69	369	
3	135.979996	4.39	439	
4	119.339996	4.75	475	
5	114.959999	6.03	603	
6	187.050003	12.47	1247	

Estimate a regression, using the new independent variable, INCOME* instead of the original independent variable, INCOME.

：这］Eile Edit View Insert Format Iools Data Window Help Adobe PDF					
H 26 f					
	A	B	C	D	E
1	SUMMARY OUTPUT				
2 2					
3	Regression Statistics				
4	Multiple R	0.620485472			
5	R Square	0.385002221			
6	Adjusted R Square	0.368818069			
7	Standard Error	89.51700429			
8	Observations	40			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	1	190626.9788	190626.9788	23.78884107
13	Residual	38	304505.1742	8013.294058	
14	Total	39	495132.153		
15					
16		Coefficients	Standard Error	t Stat	P－value
17	Intercept	－ 83.41600997	43.41016192	1.921577951	0.062182379
18	Income＊	－ 0.102096425	0.020932635	4.877380554	$1.94586 \mathrm{E}-05$
19					

The coefficient on INCOME has changed and so has its standard error．Everything else in the regression output remained the same．When reporting results，be sure to note the appropriate units of measure for both food expenditures and weekly income．

4．4．2 The log－linear model

The use of logarithmic transformations are very common with economic data．Transforming the dependent variable using the \log function will result in changing the interpretation of the regression equation．To estimate the log－linear version of the food expenditure model，we need to transform the dependent variable．

$$
\ln (y)=\beta_{1}+\beta_{2} x+e
$$

First，create a new column and label it \ln（Food＿Exp）．In this column，calculate the natural log of food expenditures by typing $=\ln (\mathbf{A} 2)$ in the first empty cell．Copy the formula down the column．

	Eile Edit	View Insert	Format Iools Data wir
	－\square^{1}	教䦽	
	－ \％$_{\text {\％}}$	Q Snagit Er	f^{\prime}｜Window
	C2	${ }_{\text {f }}$	＝＋LN（A2）
	A	B	C
1	Food＿Exp	Income	In（Food Exp）
2	115.220001	3.69	4.746843353
3	135.979996	4.39	4.912507787
4	119.339996	4.75	4.781976529
5	114.959999	6.03	4.744584233
6	187.050003	12.47	5.231375977
7	243.919998	12.98	5.496840294

62 Chapter 4

Estimate the regression model using the \ln (Food_Exp) as the dependent variable instead of Food_Exp.

in (Food_Exp)			
	Coefficients	Standard Error	t Stat
Intercept	4.780239298	0.158959254	30.07210456
Income	0.040030081	0.007665108	5.222376421

The interpretation for will be, an increase in income of $\$ 100$ leads to a 4% increase in the food expenditure.

4.4.3 The linear-log model

In linear-log model, the independent variable is transformed but not the dependent variable.

$$
y=\beta_{1}+\beta_{2} \ln (x)+e
$$

15				
16		Coefficients	Standard Error	t Stat
17	Intercept	-97.18641517	84.23744235	-1.153719919
18	Inn(Income)			
19				
20				

The interpretation for the linear-log model is, 1% increase in income, leads to about $\$ 1.32$ increase in the food expenditure.

4.4.4 The log-log model

In log-log model, both the dependent and the independent variables are transformed. Estimated β_{2} represents the elasticity indicating \% change in the y variable, when x variable increase by 1%.

$$
\ln (y)=\beta_{1}+\beta_{2} \ln (x)+e
$$

in (Food_Exp)				
	Coefficients	Standard Error	t Stat	P-value
Intercept	3.963566918	0.294373	13.46443768	$4.839 \mathrm{E}-16$
In(Income)	0.555881175	0.100659514	5.522390809	$2.57277 \mathrm{E}-06$

In the food expenditure model, a 1% increase in income, is expected to increase food expenditure by about 0.56%.

4.5 MORE EXAMPLES

4.5.1 Residual analysis with wheat data

For this example, open the excel file wa-wheat.xls. The dataset contains 48 observations on average annual wheat yield in four different shires of Western Australia; Northampton, Chapman, Mullewa, Greenough and TIME. First, estimate the simple regression of Greenough on time, and ask for the residual plot.

Excel will produce the scatter plot of the residuals through time in addition to the standard regression output.

You can format the plot or change the plot type by right-clicking on the picture and selecting Chart Type. You can then pick the desired chart type. Let's pick columns for this example.

Excel will change the chart type of the residual plot, and provide a bar chart.

Based on the residual analysis, if you think that is the incorrect functional form, you can generate a new column in Excel and transform time variable and rerun the regression using the transformed variable as your independent variable. To generate the cubic equation results described in the text, generate a transformed column under column F and replace TIME with TIME CUBE as your independent variable.

4.5.2 Log-linear model with wage data

We will use the cps_small data set to illustrate a log-linear model. Open the cps_small.xls data set. In this chapter, we will only use EDUC and WAGES, so delete the rest of the columns. You can delete the columns by highlighting the entire column and selecting Delete under Edit.

After deleting the unwanted columns, save the Excel sheet as Ch4_Wage. Then, transform the wage variable into log by typing the function in the first row below the label and copying down the entire column.

§ Microsoft Excel - Ch4_wage.xls				
饱 File Edit View Insert Format Iools				
C2			$f_{x}=+\operatorname{LN}(A)$	
	A	B	C	D
1	wage	educ	In(wage)	
2	2.03	13	0.708036	
3	2.07	12	0.727549	
4	2.12	12	0.751416	
5	2.54	16	0.932164	
6	2.68	12	0.985817	
7	3.09	13	1.128171	
8	3.16	13	1.150572	
9	3.17	12	1.153732	

66 Chapter 4

You can now estimate the log-linear function by using the new variable, $\ln (W A G E)$ as the dependent variable.

	A	B	C	D	E	F	G	H	1
1	SUMMARY OUTPUT								
2									
3	Regression St	tistics					そ		
4	Multiple R	0.4632717							
5	R Square	0.214620668							
6	Adjusted R Square	0.213833715							
7	Standard Error	0.490151106							
8	Observations	1000							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	65.52131245	65.52131245	272.7235332	2.39613E-54			
13	Residual	998	239.7676103	0.240248106					
14	Total	999	305.2889227						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
17	Intercept	0.788374304	0.084897534	9.286186174	9.70516E-20	0.621776155	0.954972453	0.621776155	0.954972453
18	educ	0.103760809	0.006283072	16.51434326	2.39613E-54	0.091431261	0.116090356	0.091431261	0.116090356
19									

The forecasted value from the log-linear wage equation is

$$
\text { Inyhat }=b_{1}+b_{2} x
$$

In order to obtain a prediction for the dependent variables y, we need to use the exponential function to get the "natural predictor" back.

$$
\hat{y}_{n}=\exp (\text { lnyhat })=\exp \left(b_{1}+b_{2} x\right)
$$

In large samples a more precise predictor is obtained by correcting that "natural predictor" by multiplying it by $\exp \left(\hat{\sigma}^{2} / 2\right)$. Using the coefficient estimates, the raw forecasted values can be calculated as shown in the cell B23 of the below Excel output. Then, the natural predicted and the corrected predictors are calculated.

	A	B	C	D	
1	SUMMARY OUTPUT				
2					
3	Regression	S Statistics			
4	Multiple R	0.4632717			
5	R Square	0.214620668			
6	Adjusted R Square	0.213833715			
7	Standard Error	0.490151106			
8	Observations	1000			\%
9					
10	ANOVA				
11		df	SS	MS	,
12	Regression	1	65.52131245	65.52131245	
13	Residual	998	239.7676103	0.240248106	
14	Total	999	305.2889227		
15					
16		Coefticients	Standard Error	t Stat	
17	Intercept	0.788374304) 0.084897534	9.286186174	
18	educ	0.103760809	0.006283072	16.51434326	
19		$\xrightarrow{\text { (1).10376083 }}$			
20	mean of $\mathrm{x}=$	- 13.285			Corrected Prediction
21				A	
22	Education	In(wage)	wage_n	wage_c	
23	1	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18{ }^{\text {* }} 23$	=+EXP(B23)	$=+E \times P(B 23) * E \times P(\$ D \$ 13 / 2)$	
24					

The standard error of the forecast can be found from the regression output using the formula provided in 4.1.1. After the predicted values and the standard error of forecast is found, it is very straight forward to construct the prediction interval. Remember that the corrected predictor will always be greater than the natural predictor since the correction factor is always greater than one.

4.5.2 Generalized \boldsymbol{R}^{2}

The generalized R^{2} is the appropriate measure of fit for this model is the square of the correlation between the "best" predictor and the wage variable. Remember that the corrected predictor and the natural predictor only differ by the constant so they have the same correlation to the wage variable. You can calculate the generalized R^{2} by using the Tools>Data Analysis>Correlation and choose the column of Wage and the column of predicted (either corrected or natural) wage or you can use the CORREL statistical function:

CORREL(wage,wage_c)

CHAPTER 5

Multiple Linear Regression

CHAPTER OUTLINE

5.1 Big Andy's Burger Barn
5.4 Confidence Intervals
5.2 Prediction
5.5 Hypothesis Testing
5.3 Sampling Precision
5.6 Goodness-of-Fit

5.1 BIG ANDY'S BURGER BARN

The multiple linear regression model is the extension of the simple model where there is more than one explanatory variable. We will use Big Andy's Burger Barn to transition to the multiple regression model. This is a multiple regression model where the dependent variable, SALES is a linear function of PRICE charged and the level of advertising, $A D V E R T$.

$$
\text { SALES }=\beta_{1}+\beta_{2} \text { PRICE }+\beta_{3} A D V E R T+e
$$

Using Excel to perform multiple regression is just like estimating a simple regression model, except we will include all explanatory variables in the \mathbf{X} range. Open andy.xls.

§ Microsoft Excel - andy.xls			
	A	B	C
1	SALES	PRICE	ADVERT
2	73.2	5.69	1.3
3	71.8	6.49	2.9
4	62.4	5.63	0.8
5	67.4	6.22	0.7
6	89.3	5.02	1.5
7	70.3	6.41	1.3
-	7	cos	

The first column is the monthly sales in $\$ 1,000$ in a given city, the second column is the price of hamburgers (actually a price index for goods sold) measured in dollars and the third column is the advertising spending, also measured in $\$ 1,000$. To estimate this model, go to Tools>Data Analysis $>$ Regression and fill in the regression dialog box so that the \mathbf{Y} Range is the dependent variable, SALES and the \mathbf{X} Range includes both the PRICE and the ADVERT columns. Make sure to check the Labels box and hit OK.

The results look very similar to what we've seen before, except now we have parameter estimates and other information on PRICE and the ADVERT. This portion of the output appears as

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression S	atistics					
4	Multiple R	0.66952055					
5	R Square	0.448257766					
6	Adjusted R Square	0.432931593					
7	Standard Error	4.886124039					
8	Observations	75					
9							
10	ANOVA						
11		$d f$	SS	MS	F	Significance F	
12	Regression	2	1396.538993	698.2694963	29.24785998	$5.04086 \mathrm{E}-10$	
13	Residual	72	1718.942985	23.87420813			
14	Total	74	3115.481978				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	118.9136131	6.351637595	18.72172512	$2.21429 \mathrm{E}-29$	106.2518552	131.5753711
18	PRICE	-7.907854804	1.095993037	-7.215241826	4.42399E-10	-10.09267696	-5.723032645
19	ADVERT	1.862583787	0.683195483	2.726282349	0.008038199	0.500658501	3.224509073

5.2 PREDICTION

Using the estimated regression equation, we can now forecast values of sales for different values of price and advertising like we did in the simple regression case using the below formula.

$$
\begin{aligned}
\widehat{\text { SALES }} & =b_{1}+b_{2} \text { PRICE }+b_{3} \text { ADVERT } \\
& =118.9136131-7.907854804 * \text { PRICE }+1.862583787 * \text { ADVERT }
\end{aligned}
$$

You can transfer this formula to Excel in the following fashion:

	A	B	C
1	SUMMARY OUTPUT		
16		Coefficients	Standard Error
17	Intercept	118.9136131	6.351637595
18	PRICE	-7.907854804	1.095993037
19	ADVERT	1.862583787	0.683195483
20			
21			
22	PREDICTION		
23	Price	Advert Expenditure	Sales Hat
24	4.00	1.00	$=+\$ B \$ 17+\$ B \$ 18^{*} A 24+\$ B \$ 19 * B 24$
25	4.50	1.00	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18^{*} \mathrm{~A} 25+\$ \mathrm{~B} \$ 19^{*} \mathrm{~B} 25$
26	5.00	1.20	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18^{*} \mathrm{~A} 26+\$ \mathrm{~B} \$ 19^{*} \mathrm{~B} 26$
27	5.50	1.20	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18^{*} \mathrm{~A} 27+\$ \mathrm{~B} \$ 19^{*} \mathrm{~B} 27$

These formulas will yield the sales forecast for specified values of price and the advertising expenditure as shown below.

	A	B	C
16		Coefficients	Standard Error
17	Intercept	118.9136131	6.351637595
18	PRICE	-7.907854804	1.095993037
19	ADVERT	1.862583787	0.683195483
20			
21			
22	PREDICTION		
23	Price	Advert Expenditure	Sales Hat
24	4.00	1.00	89.14477771
25	4.50	1.00	85.19085031
26	5.00	1.20	81.60943966
27	5.50	1.20	77.65551226

5.3 SAMPLING PRECISION

To estimate the error variance, we will use the ANOVA (Analysis of Variance) table. Recall hat the error variance of the regression equation is:

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{N} \hat{e}_{t}^{2}}{N-K}=\frac{S S E}{N-K}
$$

The formula is the sum of squared errors divided by the degrees of freedom. This quantity is important and is reported automatically in the ANOVA table when a regression is estimated.

The square root of the estimated regression variance is the Standard Error of the regression and is reported in the Regression statistics.

$$
\text { Standard Error }=\sqrt{M S E}=\sqrt{23.87420813}=4.886124039
$$

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.66952055		
5	R Square	0.448257766		
6	Adjusted R Square	0.432931593		
7	Standard Error	4.886124039		
8	Observations	75		
9				
10	ANOVA		,	
11		df	SS	MS
12	Regression	2	1396.53899:	8.2694963
13	Residual	72	1718.942985	. 87420813
14	Total	74	3115.481978	

72 Chapter 5

The estimated least squares variance/covariance matrix can be represented as

$$
\operatorname{Cov}\left(b_{1}, b_{2}, b_{3}\right)=\left[\begin{array}{ccc}
\operatorname{var}\left(b_{1}\right) & \operatorname{cov}\left(b_{1}, b_{2}\right) & \operatorname{cov}\left(b_{1}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{2}\right) & \operatorname{var}\left(b_{2}\right) & \operatorname{cov}\left(b_{2}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{3}\right) & \operatorname{cov}\left(b_{2}, b_{3}\right) & \operatorname{var}\left(b_{3}\right)
\end{array}\right]
$$

The estimated variance/covariance matrix of the least squares estimators are not directly reported by Excel. However, in the simple model they are easily obtained. The estimated variance of b_{2} is

$$
\operatorname{vâr}\left(b_{2}\right)=\frac{\hat{\sigma}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}
$$

The standard error of the estimated coefficient is

$$
\operatorname{se}\left(b_{2}\right)=\sqrt{\operatorname{vâr}\left(b_{2}\right)}=\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}}
$$

In the Excel output we are given the values of the standard errors for the least squares estimates. The Standard Errors are reported in the column next to the Coefficient estimates. The estimated variances can be obtained by squaring the standard errors.

	Coefficients	Standard Error
Intercept	118.9136131	6.351637595
PRICE	-7.90785480	1.095993037
ADVERT	$1.862597 / 87$	0.683195483
$6.351637595 \wedge 2=40.3433001$		
Var(b1)	= + C17 2	40.34330014
Var(b2)	=+C18^2	1.201200738
Var(b3)	=+C19^2	0.466756068

So, we can fill in the variances in the covariance matrix as follows:

$$
\operatorname{Cov}\left(b_{1}, b_{2}, b_{3}\right)=\left[\begin{array}{ccc}
40.3433 & \operatorname{cov}\left(b_{1}, b_{2}\right) & \operatorname{cov}\left(b_{1}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{2}\right) & 1.2012 & \operatorname{cov}\left(b_{2}, b_{3}\right) \\
\operatorname{cov}\left(b_{1}, b_{3}\right) & \operatorname{cov}\left(b_{2}, b_{3}\right) & .4668
\end{array}\right]
$$

The formula for $\operatorname{cov}\left(b_{2}, b_{3}\right)$ is:

$$
\operatorname{cov}\left(b_{2,} b_{3}\right)=\frac{-r_{23} \hat{\sigma}^{2}}{\left(1-r_{23}^{2}\right) \sqrt{\sum x_{t 2}^{* 2}} \sqrt{\sum x_{t 3}^{* 2}}} \text { where } \sqrt{\sum x_{t k}^{* 2}}=\sqrt{\sum_{t=1}^{T}\left(x_{t k}-\bar{x}_{k}\right)^{2}}
$$

Since the estimated covariances are not reported by Excel directly, we need to translate this formula into Excel. Let's start by creating a worksheet by copying our data worksheet. Choosing Edit>Move or Copy Sheet.

23 Microsoft Excel - andy.xls							
国	File	Edit	Yiew	Insert	Format	t Iools	
	\square		Undo Insert Columns Ctrl+Z Repeat Insert Columns Ctrl+Y				-
	A1		Cut Ctrl+X Copy Ctrl+C				
	A						
1	SAI		Office Clipboard...				
2							
3			Paste Ctrl+V				
4			Paste Special... Paste as Hyperlink				
5							
6							
7			Fill				
8			Clear				
9			Delete...				
10							
11			Delete Sheet				
12			Move or Cray Sheet...				
13		猪	Find... $\mathrm{Ctrl}+\mathrm{F}$ Replace... $\mathrm{Ctrl}+\mathrm{H}$ Go To... $\mathrm{Ctrl}+\mathrm{G}$				
15							
16							
17							
18			Links...				
19			Object				
20		13.7		0			

Move/Copy dialog box will open, choose the data sheet and make sure to click the Create a copy box.

You will see another tab added to your three existing worksheets. Rename the new sheet covariance by highlighting the name of the tab. First calculation will be the sum of square calculations in the denominator,

$$
\sqrt{\sum x_{t k}^{* 2}}=\sqrt{\sum_{t=1}^{T}\left(x_{t k}-\bar{x}_{k}\right)^{2}}
$$

To accomplish this, go to the bottom of PRICE column and write the formula to get the average \bar{x}, and repeat it for $A D V E R T$ column.

\$ Microsoft Excel - andy.xls					
: 区i] Eile Edit View Insert			Format	Iod	Windo
A B			c	D	E
73	74.2	5.11	0.7		
74	75.4	5.71	0.7		
75	81.3	5.45	2		
76	75	6.05	2.2		
77		5.6872	1.844		
78					

Next, create 2 new columns and name them PRICE - MEANP and ADVERT- MEANA. In these columns, we will store the difference from the mean.

Recall that we store the mean of price in cell B77. By putting the $\$$ signs, we are making sure, EXCEL will use the same cell for the mean even when we copy our formula to another cell. Now, copy and paste the formula to the rest of the column and repeat the process for the ADVERTMEANA column, too.

Once you have calculated the differences from means, we will now calculate the sum of squares. Recall that we can do Sum of Squares calculations using the Insert function

or simply by typing the formula $=$ SUMSQ(...).

Once you have the squares calculated, we can now create columns to calculate the deviation, all we have to do is to put the formula together. Recall that the formula is

$$
\operatorname{cov}\left(b_{2}, b_{3}\right)=\frac{-r_{23} \hat{\sigma}^{2}}{\left(1-r_{23}^{2}\right) \sqrt{\sum x_{t 2}^{* 2}} \sqrt{\sum x_{t 3}^{* 2}}}
$$

We already know that $\hat{\sigma}^{2}=M S E=23.8742$ from our regression output. We have calculated the correlation coefficient between PRICE and ADVERT to be 0.0264 . Plug all the numbers into the formula will give us the covariance of

$$
\operatorname{cov}\left(b_{2}, b_{3}\right)=-0.01974
$$

5.4 CONFIDENCE INTERVALS

The 95% confidence interval for each parameter is provided by default in the Excel regression output. If a different confidence interval is needed, Excel will also provide that. We can return to the worksheet containing the original andy.xls data. Run the regression using Tools/Data Analysis/Regression. We can then check the Confidence Level box and set the level to 90. Set all other desired options and click OK.

Both the 95% and 90% confidence intervals are reported for the β_{1}, β_{2}, and β_{3}.

16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Cower 90.0\%	Upper 90.0\%
17	Intercept	118.9136131	6.351637595	18.72172512	$2.21429 \mathrm{E}-29$	106.2518552	131.5753711	108.3299194	129.4973068
18	PRICE	-7.907854804	1.095993037	-7.215241826	$4.42399 \mathrm{E}-10$	-10.09267696	-5.723032645	-9.734101094	-6.081608514
19	ADVERT	1.862583787	0.683195483	2.726282349	0.008038199	0.500658501	3.224509073	0.72417946	3.000988115

The 90% confidence interval for β_{3} suggests that an additional $\$ 1000$ in advertising expenditures leads to an increase in total revenue that is between $\$ 724$ and $\$ 3001$. Note that a 95% interval is always wider than the 90% confidence interval.

5.5 HYPOTHESIS TESTING

The t-test to test the significance of β_{2}, that the coefficient is zero, against the two sided alternative that it is not, is

$$
t=\frac{b_{2}-0}{\operatorname{se}\left(b_{2}\right)}=\frac{-7.908}{1.096}=-7.215
$$

Excel provides the t-stats and p-values in the regression output is the simplest way to test the significance of a single coefficient. The results are

	Coefficients		Standard Error	t Stat
Intercept	118.9136131	6.351637595	18.72172512	$2.21429 \mathrm{E}-29$
PRICE	-7.907854804	1.095993037	-7.215241826	$4.42399 \mathrm{E}-10$
ADVERT	1.862583787	0.683195483	2.726282349	0.008038199

Recall that the t-stat is the coefficient divided by its standard error. Based on the reported p values, both b_{2} and b_{3} are significant at the 5% as well as 1% level.

Sometimes we will need general tests about our parameters, such as the elasticity of demand where the null and alternative hypotheses are $H_{0}: \beta_{2} \geq 0$: a decrease in price leads to a decrease in total revenue (demand is price inelastic) and $H_{1}: \beta_{2}<0$: a decrease in price leads to an increase in total revenue (demand is price elastic).

Or we may want to test an economic hypothesis such as

$$
\begin{aligned}
& H_{0}: \beta_{3} \leq 1 \\
& H_{1}: \beta_{3}>1
\end{aligned}
$$

To test whether an increase in advertising expenditures is "worth it", that is, total revenues increase enough to cover the increased cost of the advertising, we use the t-statistic

$$
t=\frac{b_{3}-1}{s e\left(b_{3}\right)}
$$

If the null hypothesis is true, it suggests that a dollar increase in advertising expenditures leads to less than a dollar increase in total revenue. In this case, it doesn't make sense to spend that extra dollar. On the other hand, if we reject the null hypothesis we conclude that there is sufficient statistical evidence to suggest that an increase in advertising expenditures is "worth it" in terms of the increase in total revenue. The value of the test statistic is

$$
t=\frac{b_{3}-1}{\operatorname{se}\left(b_{3}\right)}=\frac{1.8626-1}{0.6832}=1.263
$$

Since $1.263<1.666$, we do not reject the null hypothesis. The critical value for this one-tail test is obtained as

5.6 GOODNESS-OF-FIT

The goodness-of-fit of the regression model is based on the ANOVA table. The coefficient of determination, R^{2} and the ANOVA table are reported for the multiple regression model as they are for the simple model. The R^{2} measures the percent variation in dependent variable explained by the regression model. We already know how to decompose the sums of squares as

$$
S S T=S S R+S S E
$$

And the coefficient of determination, R^{2} is

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

The results from the regression are

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression St	tatistics			
4	Multiple R	0.66952055			
5	R Square	0.448257766			
6	Adjusted R Square	0.432931593			
7	3) adard Error	4.886124039			
8	Ubservations	75			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	2	1396.538993	698.2694963	29.24785998
13	Residual	72	1718.942985	23.87420813	
14	Total	74	3115.481978		

The value $R^{2}=.448$ means that 44.8% of the total variation in total revenue is explained by price and advertising expenditures. However, there can be a problem with this measure in the multiple regression model since addition of each additional explanatory variable will inflate the R^{2} even if there is no economic basis for the variables to appear in the model.

An alternative measure is the "adjusted $R^{2 "}$, denoted by Excel as Adjusted R Square is reported just below \mathbf{R} Square. Adjusted \mathbf{R} Square imposes a penalty for adding explanatory variables so it can never be larger than R^{2}. The Adjusted $-R^{2}$ can also be calculated from the ANOVA table.

$$
\bar{R}^{2}=1-\frac{S S E /(N-K)}{S S T /(N-1)}
$$

While this solves the problem associated with R^{2} (which has a particular interpretation!), the adjusted- R^{2} has no interpretation. It is no longer the percent of the variation in total revenue that is explained by the model. It should NOT be used as a device for selecting appropriate explanatory variables; good economic theory should determine the model.

CHAPTER 6

Further Inference in the Multiple Regression Model

CHAPTER OUTLINE

6.1 The F-test

6.2 Testing the Overall Significance of the Model
6.3 An Extended Model
6.4 Testing Economic Hypothesis
6.4.1 The significance of advertising
6.4.2 Optimal level of advertising

6.5 Nonsample Information
6.6 Model Specification 6.6.1 Omitted variables 6.6.2 Irrelevant variables 6.6.3 Choosing the model
6.7 Poor Data, Collinearity and Insignificance

6.1 F-TEST

The t-test is used to test a specific null hypothesis, such as a single test of significance. With the multiple regression model, we might be interested in testing whether two or more explanatory variables are jointly important to the model. The F-test allows for testing joint hypotheses, and is based on a comparison of the sum of the squared errors from an unrestricted (full, or "original") model to the sum of squared errors from a model where the null hypothesis has been imposed. In the Big Andy's Burger Barn example, we estimated the model

$$
S_{i}=\beta_{1}+\beta_{2} P_{i}+\beta_{3} A_{i}+e_{i}
$$

We can use the t-test to test the hypothesis $H_{0}: \beta_{2}=0$ against $H_{1}: \beta_{2} \neq 0$. Another way to test this hypothesis is in terms of the models each hypothesis implies using an F-test. If the null hypothesis is true, then the restricted model is formed as

$$
S_{i}=\beta_{1}+\beta_{3} A_{i}+e_{i}
$$

The F-test compares the sums of squared errors from the restricted model and the unrestricted model. A large difference will signal that the restrictions are false. The F-statistic we will use is

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(N-K)}
$$

where $S S E_{R}$ and $S S E_{U}$ are the sum squared errors from the ANOVA tables of the restricted and unrestricted models, respectively. J is the number of hypotheses or restrictions in the null hypothesis. N is the sample size of the unrestricted model, and K is the number of parameters in the unrestricted model. If the null hypothesis is true, this test statistic follows the F-distribution with J numerator and $N-K$ denominator degrees of freedom.

Unfortunately, Excel will not report these values automatically, so we will prepare a template for the F-test. Let's start with Insert>Worksheet in the Andy.xls file. Name the new worksheet F Test. Type a heading such as "Hypothesis Testing - F-Test" in cell A1. Type Data Input labels and Computed Values labels in column A. For appearances, left justify and set to bold font the labels Data Input and Computed Values and right justify the sub-labels as shown below.

	A	
1	Hypothesis Testing-F-Test	
2		
3	Data Input	J

In column B, we will type the formulas necessary to calculate the F-statistic, the appropriate decision, and the p-value associated with the calculated F-statistic. The commands are similar to those used to create the t-test template in Chapter 5. To calculate the F-statistic for a particular test, see the formula in cell B14. The functions FINV and FDIST are used to find the F-critical value and the p-value associated with the calculated F-statistic, respectively. The syntax of these functions are $\operatorname{FINV}\left(\alpha, \mathbf{d f} _\mathbf{n}, \mathbf{d f} _\mathbf{d}\right)$ and FDIST(F-stat, df_n,df_d).

To obtain the information needed in the Data Input section of the template, we need two regressions; the unrestricted model and the restricted model. We will use the SSE's from the ANOVA tables of each model. Now we can conduct the test for the restricted and unrestricted models mentioned above.

Since we already have the unrestricted regression model for Andy.xls, we only need to run the restricted model by going to Tools>Data Analysis>Regression. This time include only advertisement (ADVERT) as the explanatory variables and save the worksheet as "Restricted Model" and click OK.

The regression output will be stored in the "Restricted Model" worksheet and will contain the ANOVA table.

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.222080315			
5	R Square	0.049319666			
6	Adjusted R Square	0.036296648			
7	Standard Error	6.3696922			
8	Observations	75			
9					
10	ANOVA	,			
11		df	SS	MS	F
12	Regression		. 153.6545312	153.6545312	3.787114875
13	Residual	73	2961.827446	40.57297872	
14	Total	74	3115.481978		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercent	74.17972293	1.79898273	41.23426071	$2.56286 \mathrm{E}-52$
	ADVERT	1.732615442	0.890323714	1.946051098	0.055498127

We can now transport the SSEs from the two models into our F-test template and test the hypothesis. First, highlight the cell that contains the SSE from the restricted model. With cell C13 highlighted, choose Edit/Copy from the main Menu. A scrolling border appears around the cell.

The value is now stored on the Excel's clipboard and be pasted as desired. Go to the "Restricted Model" worksheet and Edit>Paste the SSE number from the restricted model under the Data inputs at cell B7.

Now repeat this procedure for the unrestricted SSE from the original regression and paste it in cell B8. Fill in all the Data Input with appropriate information. Type "0.05" in cell B5 for testing at the 5% level. The computed values should now appear, and the appropriate decision reported.

Since the F-statistic $>F$-critical value, and the p-value $<\alpha$, we reject the null hypothesis at the 5% level and conclude the price does have an effect on total revenue.

6.2 TESTING THE OVERALL SIGNIFICANCE OF THE MODEL

In the application of the F-test, the model significance at the desired α-level is determined. Consider a general linear model with K regressors with $K-1$ explanatory variables and K unknown parameters.

$$
y_{i}=\beta_{1}+x_{i 2} \beta_{2}+x_{i 3} \beta_{3}+\ldots .+x_{i k} \beta_{k}+e_{i}
$$

We test whether all of the coefficients on the $K-1$ explanatory variables are jointly equal to zero, versus the alternative that at least one of coefficients is not zero. If the explanatory variables have no effect on the average value of y, then each of the slopes will be zero, leading to the following null and alternative hypothesis:

$$
H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\ldots . .=\beta_{k}=0
$$

$$
H_{1}: \text { At least one of the } \beta_{k} \text { is nonzero for } k=2,3, \ldots K
$$

We can use the template created for any F-test of interest including this one. For jointly testing the significance of all of the explanatory variables in Andy's Burger Barn, we test that all the β^{\prime} 's are zero except β_{1}, the intercept. Note that when there are $\underline{\mathbf{N O}}$ explanatory variables in the model other than the intercept. The $S S E_{R}$ is equal to the $S S T$ from the unrestricted model. The results and appropriate decision are

We reject the null hypothesis and conclude that our model is significant at the 5% level; price or advertising expenditures, or both have a significance effect on total revenue.

Alternatively, we can obtain the result to this F-test from Excel's ANOVA table. Notice that the F and p-values associated with the F-Test are identical.

9						
10	ANOVA					
11		$d f$		SS	MS	F
12	Regression	2	1396.538993	698.2694963	29.24785998	$5.04086 \mathrm{E}-10$
13	Residual	72	1718.942985	23.87420813		
14	Total	74	3115.481978			

If we compare the F-statistic to a critical value, or more easily, compare the p-value to α, we reject the null hypothesis and conclude the model is statistically "important".

6.3 AN EXTENDED MODEL

The concept of diminishing marginal returns is an important one in economics, and you should carefully consider this when modeling economic relationships. In our Sales for Andy's Burger Barn model, it seems reasonable that each and every dollar increase in advertising expenditures would not lead to the same increase in sales; that is, the possibility of diminishing marginal returns to advertising should be considered. To allow for this possibility, we include the explanatory variable squared in the model. For simplicity we will rename SALES $=S, P R I C E=P$ and $A D V E R T=A$.

$$
S_{i}=\beta_{1}+\beta_{2} P_{i}+\beta_{3} A_{i}+\beta_{4} A_{i}^{2}+e_{i}
$$

To extend our model to include this additional regressor, open the worksheet Andy.xls. Label column D "A2" and in cell D2, type the formula =C2^2. Copy this formula down the column. Estimate the regression and save the output in the "Extended Model" worksheet.

We will get the following results:

	A	B	c	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression Statistics						
4	Multiple R	0.712906125					
5	R Square	0.508235142					
6	Adjusted R Square	0.487456346					
7	Standard Error	4.645283161					
8	Observations	75					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	1583.397427	527.7991422	24.4593153	$5.59997 \mathrm{E}-11$	
13	Residual	71	1532.084551	21.57865565			
14	Total	74	3115.481978				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	109.7190398	6.79904566	16.1374177	$1.87037 \mathrm{E}-25$	96.16212798	123.2759516
18	PRICE	-7.640000543	1.045938915	-7.304442384	$3.23648 \mathrm{E}-10$	-9.725543479	-5.554457608
19	ADVERT	12.15123398	3.556164048	3.416949784	0.0010516	5.060444353	19.2420236
20	A2	-2.767962762	0.940624059	-2.942687607	0.004392671	-4.643513842	-0.892411683

Price P is now insignificant at the 5% level when squared advertising expenditures $\left(A^{2}\right)$ are included in the model. The estimated coefficient on A^{2} is negative as expected, and comparing the p-value to (any level of) α we conclude that it is significantly different from zero. This suggests that there are diminishing returns to advertising.

6.4 TESTING SOME ECONOMIC HYPOTHESES

Using this expanded model for total revenue, we will now examine several hypotheses of interest, using both t-tests and F-tests.

6.4.1 The significance of advertising

To test for the significance of all levels of advertising requires a joint hypothesis test; we must now consider the significance of both β_{3} and β_{4} using $\mathrm{H}_{0}: \beta_{3}=0, \beta_{4}=0$ against the alternative that at least one of the coefficients is not zero. We already have the unrestricted model in the previous section, we will need to estimate the restricted model, where PRICE will be the only explanatory variable. The ANOVA results are

	A	B	C	D	E	F
1	SUMMARY OUTPUT					
2						
3	Regression St	tistics				
4	Multiple R	0.625540559				
5	R Square	0.391300991				
6	Adjusted R Square	0.382962648				
7	Standard Error	5.09685747				
8	Observations	75				
9						
10	ANOVA					
11		df	SS	MS	F	Significance F
12	Regression		1219.091184	1219.091184	46.92791	1.97077E-09
13	Residual	73	1896.390793	25.97795607		
14	Total	74	3115.481978			

We can now transfer the SSEs from this restricted model and the model we labeled "Extended Model" and use our template to test the significance of level of advertising at 5% significance level.

	A	B
1	Hypothesis Testing - F-Test	
2		
3	Data Input	
4	J	2
5	N	- 75
6	K	4
7	SSE-RESTRICTED	1896.390793
8	SSE-UNRESTRICTED	1532.084551
9	ALPHA	0.05
10		
11	Computed Values	Extended Model
12	df-numerator	2
13	df-denominator	71
14	F	8.441356314
15	Right Critical value	3.125764237
16	Decision	Reject Null
17	p-value	0.000514161

We reject the null hypothesis and conclude that advertising expenditures do significantly affect total revenue.

6.4.2 Optimal level of advertising

We have already illustrated that the returns to advertising diminish. Then the optimal level of advertising will occur at the point where the marginal cost is equal to the marginal benefit of advertising. In other words, the optimum level is when the next dollar spent on advertising equals only one more dollar of sales. Taking the derivative of expected SALES with respect to Advertising expenditures A will give us the marginal benefit, which is

$$
\frac{\Delta E(S)}{\Delta A}=\beta_{3}+2 \beta_{4} A=1
$$

Solving for A gives $A^{*}=\left(1-b_{3}\right) / 2 b_{4}$, where b_{3} and b_{4} are the least square estimates. We can then substitute in our estimates for β_{3} and β_{4} and solve for the optimal level of advertising

$$
A^{*}=\frac{1-12.15123398}{2(-2.767962762)}=2.014
$$

which is $\$ 2014$.
Suppose Andy wants to test if the optimal level of advertising is $\$ 1,900$. If we substitute 1.9 (since advertising data is in $\$ 1000$), leads to the following hypothesis:

$$
\mathrm{H}_{0}: \beta_{3}+2 \beta_{4}(1.9)=1 \text { against the alternative } \mathrm{H}_{0}: \beta_{3}+2 \beta_{4}(1.9) \neq 1
$$

or equivalently

$$
\mathrm{H}_{0}: \beta_{3}+3.8 \beta_{4}=1 \text { against the alternative } \mathrm{H}_{0}: \beta_{3}+3.8 \beta_{4} \neq 1
$$

A t-test could be used to test this single hypothesis, using the test statistic,

$$
t=\frac{\left(b_{3}+3.8 b_{4}\right)-1}{\operatorname{se}\left(b_{3}+3.8 b_{4}\right)}
$$

However, this test would require a calculation using the covariance between b_{3} and b_{4}. Since Excel does not report the estimated covariance matrix for the LS estimators, we will instead use the F-test. We can construct the restricted model by plug in the restriction $\left(\beta_{3}+3.8 \beta_{4}=1 \Rightarrow \beta_{3}=1-3.8 \beta_{4}\right)$ into our equation $\left(S=\beta_{1}+\beta_{2} P+\beta_{3} A+\beta_{4} A^{2}\right)$ such that the restricted model will become:

$$
S-A=\beta_{1}+\beta_{2} P+\beta_{4}\left(A^{2}-3.8 A\right)+e
$$

To run the restricted model, open Andy.xIs.

- Highlight column B. Insert a column by choosing Insert>Columns from the menu bar. Label this new column S-A indicating Sales - Advertising.
- In the first empty cell of this column, type =A2-D2 and copy this formula down the column. This column will represent our new dependent variable for the restricted model.
- Next, highlight column D and insert a new column. Label this A2-3.8A. In the first empty cell, type $=\mathbf{F} \mathbf{2 - (3 . 8 *} \mathbf{E} \mathbf{2})$ and copy the formula down the column. This column will be our new explanatory variable.
- Observe that we inserted the A2-3.8A column next to the PRICE column since in Excel, the columns used for the \mathbf{X}-Range (the explanatory variables) must be in adjacent columns. So, if you ever find that you want to run a regression and the explanatory variables are not all in adjacent columns, simply highlight and move things around as needed. Now we are ready to run the restricted model. Choose Tools $>\underline{\text { Data }}$ Analysis>Regression. Use S - A as the $\underline{\mathbf{Y}}$-Range. Use PRICE and $A 2-3.8 \mathrm{~A}$ as the $\underline{\mathbf{X}}$ Range. Perform this regression as usual.

The regression summary output is

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression S	tistics					
4	Multiple R	0.693339057					
5	R Square	0.480719048					
6	Adjusted R Square	0.466294577					
7	Standard Error	4.64322439					
8	Observations	75					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	2	1437.013271	718.5066356	33.32663303	$5.6818 \mathrm{E}-11$	
13	Residual	72	1552.286357	21.55953273			
14	Total	74	2989.299628				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	110.3589599	6.763803393	16.31610996	6.84193E-26	96.87556446	123.8423554
18	PRICE	-7.603104222	1.044780309	-7.277227713	$3.39617 \mathrm{E}-10$	-9.685835675	-5.520372768
19	A2-3.8A	-2.876514915	0.93349559	-3.081444569	0.002917717	-4.737404337	-1.015625493

This sum squared residual can now be used in the F-test template. Recall that we are testing H_{0} : $\beta_{3}+2 \beta_{4}(1.9)=1$ or that $\$ 1,900$ is the optimal level of advertising or not. After copying SSEs for the restricted and unrestricted model, set $J=1$ since we have only a single null hypothesis. The results from this test are

	A	
1	Hypothesis Testing - F-Test	
2		
3	Data Input	
4	J	
5	N	
6	K	
7	SSE-RESTRICTED	
8	SSE-UNRESTRICTED	75
9	ALPHA	4
10		
11	Computed Values	
12	df-numerator	
13	df-denominator	
14	F	
15	Right Critical value	
16	Decision	
17	P-value	

We cannot reject the hypothesis that $\$ 1,900$ is the optimal level of weekly advertising expenditures at the 5% level and conclude that Andy's advertising strategy is compatible with the data.

We can also conduct a joint test of two of Big Andy's suppositions. Let's say in addition to proposing that the optimal level of monthly advertising expenditure is $\$ 1,900$, Andy is assuming that $P=6$ will yield sales revenue of $\$ 80$. The joint hypothesis will be:

$$
H_{0}: \beta_{3}+3.8 \beta_{4}=1 \text { and } \beta_{1}+6 \beta_{2}+1.9 \beta_{3}+3.61 \beta_{4}=80
$$

H_{1} : at least one hypothesis is not true

Since $J=2$, we must perform an F-test. The restricted model is found by substituting both the hypotheses in the null on the model and rearranging terms to form a model suitable for estimation. It can be shown that the equation used to estimate the restricted model is

$$
S-A-80-1.9=\beta_{2}(P-6)+\beta_{4}\left(A^{2}-3.8 A+3.61\right)+e
$$

To test this joint hypothesis in Excel, return to the worksheet containing the original data in andy.xls.

- Create three new columns labeled YSTAR, $P-6$, and $A S T A R$.
- In the first empty cell of YSTAR, type the formula =B2-78.1, where cell B2 contains S-A.
- In the first empty cell of $P-6$, type $=\mathbf{C 2 - 6}$, where cell C 2 contains PRICE .
- In the first empty cell of ASTAR, type =F2-(3.8*E2)+3.61, where cell F2 contains A2 and E2 contains A.
- Highlight the three cells containing these new formulas. Place the cursor on the lower right-hand corner of this selection until it turns into a cross-hatch. Left click, hold, and drag down to row 79. Release and the values appear in the cells.
- Estimate a regression using YSTAR as the $\underline{\mathbf{Y}}$-Range. Use $P-6$, and ASTAR as the $\underline{\mathbf{X}}$ Range.
- Use the SSE from this restricted model and SSE from the unrestricted model to conduct the F-test, where $K=4, J=2$.

6.5 NONSAMPLE INFORMATION

Often times we have information about a particular model that does not come directly from the data. The information may come from past experience or from economic tenets. If correct the nonsample information improves the precision with which you can estimate the remaining parameters. To illustrate how we might go about incorporating the nonsample information, consider a model designed to explain the demand for beer, we will use a model of demand for beer (Q) based on its price $(P B)$, the price of other liquor $(P L)$, the price of all other remaining goods and services ($P R$), and income (I). The nonsample information is that consumers do not suffer from "money illusion"; that is, when all prices and income go up by the same proportion, there is no change in quantity demanded.

We will use a log-log functional form for the model, and then impose restrictions that incorporate our nonsample information. The unrestricted model is

$$
\ln \left(Q_{t}\right)=\beta_{1}+\beta_{2} \ln (P B)+\beta_{3} \ln (P L)+\beta_{4} \ln (P R)+\beta_{5} \ln (I)+e
$$

and will impose the restriction $\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5}=0$.
Rearranging this restriction, we have $\beta_{4}=-\beta_{2}-\beta_{3}-\beta_{5}$, which can be substituted into the unrestricted model. After some manipulation, the equation we will estimate is

$$
\ln \left(Q_{t}\right)=\beta_{1}+\beta_{2} \ln \left(\frac{P B_{t}}{P R_{t}}\right)+\beta_{3} \ln \left(\frac{P L_{t}}{P R_{t}}\right)+\beta_{5} \ln \left(\frac{I_{t}}{P R_{t}}\right)+e
$$

This equation incorporates the properties of logarithms, as well as the nonsample information. We will get the Restricted Least Square Estimates by incorporating this restriction.

Open the data file beer.xls. Note that the original data have associated labels already.

- Label the next 3 columns $P B / P R, P L / P R$, and $I / P R$.
- For $P B / P R$, in cell F2, type =B2/D2. Highlight cell F2, left-click on the lower right hand corner, hold, and drag down the next two cells to right.
- Repeat the process for $P L / P R$, and $I / P R$.
- Label the next four columns for the logs of the data, labeling them $\ln Q, \ln P B / P R$, $\ln P L / P R$, and $\ln I / P R$. Calculate the natural \log of Q in cell I2 by typing =LN(A2), where cell A2 contains the first observation on Q.
- Calculate the natural \log of $P B / P R$ in cell J 2 by typing $=\mathbf{L N}(F 2)$. Highlight cell J 2 , leftclick on the lower right hand corner, hold, and drag across the next two cells to right. This copies the formula for the other variables.
- Highlight the section of cells containing the \log formulas (I2 to L2). Left-click on the lower right hand corner of the selection, hold, and drag down the column to copy the formulas down to row 31.

We can now run the regression by choosing Tools $>$ Data Analysis $>$ Regression to estimate the regression model. Use $\ln Q$ as the \mathbf{Y}-Range and $\ln P B / P R$, $\ln P L / P R$, and $\ln I / P R$ as the \mathbf{X}-Range. Include labels by checking the Labels box. Store the regression output on a new worksheet named "Nonsample Information".

and click OK for the output.

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression St	istics					
4	Multiple R	0.898859761					
5	R Square	0.80794887					
6	Adjusted R Square	0.785789124					
7	Standard Error	0.061675593					
8	Observations	30					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	0.416070592	0.138690197	36.46020488	1.83399E-09	
13	Residual	26	0.098900847	0.003803879			
14	Total	29	0.514971439				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	-4.797797376	3.71390504	-1.291847079	0.207775913	-12.43183844	2.836243691
18	InPB/PR	-1.299386484	0.165737623	-7.840021241	2.57799E-08	-1.640065044	-0.958707925
19	InPL/PR	0.186815879	0.284383258	0.656915882	0.517008126	-0.397742275	0.771374032
20	Inl/PR	0.945828579	0.427046831	2.214812313	0.035742225	0.068021255	1.823635904

Recall that our restriction was $\beta_{4}=-\beta_{2}-\beta_{3}-\beta_{5}$. To get back the estimate of β_{4}, we need one more step. Unfortunately, while some statistical packages have options to automatically estimate restricted least squares estimates, Excel does not.

In cell A21, type $b 4^{*}=$ as a label. Next, in cell B21 type $=-\mathrm{B} 18-\mathrm{B} 19-\mathrm{B} 20$ to calculate $b_{4}{ }^{*}=$ $-b_{2}{ }^{*}-b_{3}{ }^{*}-b_{5}{ }^{*}$, where cells B18, B19, and B20 contain the respective estimates. The restricted least squares estimates are

	A	B	C
1	SUMMARY OUTPUT		
2			
3	Regression Statistics		
4	Multiple R	0.898859761	
5	R Square	0.80794887	
6	Adjusted R Square	0.785789124	
7	Standard Error	0.061675593	
8	Observations	30	
9			
10	ANOVA		
11		$d f$	SS
12	Regression	3	0.416070592
13	Residual	26	0.098900847
14	Total	29	0.514971439
15			
16		Coefficients	Standard Error
17	Intercept	-4.797797376	3.71390504
18	InPB/PR	-1.299386484	0.165737623
19	InPL/PR	0.186815879	0.284383258
20	InliPR	0.945828579	0.427846831
21			,
22	b4* ${ }^{*}$	0.166742026	

Recall that the log-log model specification provides estimates of elasticities, not marginal effects. Substituting these results back into our specification, we have

$$
\ln \left(Q_{\mathrm{t}}\right)=-4.7978-1.2994 \ln (P B)+0.1868 \ln (P L)+0.1667 \ln (P R)+0.9458 \ln (I)
$$

From the results, we find that demand for beer is price elastic $\left(b_{2}<-1\right)$, does not seem to be affected by the price of other liquor (β_{3} is not statistically significant), and might be an inferior $\operatorname{good}\left(\beta_{5}<1\right)$, although this would have to be formally tested.

6.6 MODEL SPECIFICATION

Three essential features of model choice are (1) choice of functional form, (2) choice of explanatory variables (regressors) to be included in the model, and (3) whether the multiple regression model assumptions MR1-MR6, listed in Chapter 5, hold. In this section, we will explore the first two.

6.6.1 Omitted variables

If you omit relevant variables from your model, then least squares estimator will be biased. To introduce the omitted variable problem, we will consider a sample of married couples where both husbands and wives work. Open edu_inc.xls and first regress family income (FAMINC) on both husband's (HE) and wife's education (WE). The results are

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression St	stistics			
4	Multiple R	0.401622273			
5	R Square	0.16130045			
6	Adjusted R Square	0.157353629			
7	Standard Error	40497.85958			
8	Observations	428			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	2	$1.34055 \mathrm{E}+11$	67027380194	40.86844417
13	Residual	425	$6.97033 \mathrm{E}+11$	1640076630	
14	Total	427	$8.31087 \mathrm{E}+11$		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-5533.630698	11229.53295	-0.492774786	0.622426214
18	HE	3131.509312	802.9079857	3.900209449	0.00011168
19	WE	4522.641199	1066.326646	4.241328128	$2.72885 \mathrm{E}-05$

Omitting wife's education and regressing family income (FAMINC) on only husband's (HE) yields:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.354684413			
5	R Square	0.125801033			
6	Adjusted R Square	0.123748923			
7	Standard Error	41297.49176			
8	Observations	428			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	$1.04552 \mathrm{E}+11$	$1.04552 \mathrm{E}+11$	61.3032526
13	Residual	426	$7.26536 \mathrm{E}+11$	1705482826	
14	Total	427	$8.31087 E+11$		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	26191.26868	8541.108357	3.066495305	0.002303803
18	HE	5155.483577	658.4573486	7.829639366	$3.92051 \mathrm{E}-14$

And including WE and number of preschool age children (KL6) yields:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.420919613			
5	R Square	0.177173321			
6	Adjusted R Square	0.171351434			
7	Standard Error	40160.0814			
8	Observations	428			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	3	$1.47247 \mathrm{E}+11$	49082167249	30.43228498
13	Residual	424	$6.83841 \mathrm{E}+11$	1612832138	
14	Total	427	$8.31087 E+11$		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-7755.331329	11162.93447	-0.694739484	0.487599098
18	HE	3211.525676	796.7026365	4.031021775	6.58407E-05
19	WE	4776.907489	1061.16372	4.501574447	8.72703E-06
20	KL6	-14310.92032	5003.928369	-2.859937086	0.004446558

6.6.2 Irrelevant variables

Including irrelevant variables in your model impairs the precision of least squares estimator. Least squares will be unbiased, but standard errors of the coefficients will be larger than necessary. In this example, two extraneous variables ($X T R A _X 5$ and $X T R A _X 6$) are added to the model. The results are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.421659186			
5	R Square	0.177796469			
6	Adjusted R Square	0.168054721			
7	Standard Error	40239.88895			
8	Observations	428			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	5	$1.47764 \mathrm{E}+11$	29552878521	18.2509822
13	Residual	422	$6.83323 \mathrm{E}+11$	1619248663	
14	Total	427	$8.31087 \mathrm{E}+11$		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-7558.615278	11195.41057	-0.675153022	0.4999483
18	HE	3339.791791	1250.039195	2.671749657	0.007837757
19	WE	5868.678132	2278.066794	2.576165961	0.010329332
20	KL6	-14200.18311	5043.719575	-2.815418839	0.005099603
21	XTRA_X5	888.8441205	2242.490245	0.396364766	0.692036298
22	XTRA X6	-1067.186625	1981.684891	-0.538524883	0.590498671

Notice how much larger the estimated standard errors became compared to the last regression in the previous section.

6.6.3 Choosing the model

Choosing an appropriate functional form for the model is very important. Although theoretical considerations should be the primary guide to functional form selection, you can also use the RESET (Regression Specification Error Test) test as a check to determine if you are making an obvious error in specifying your function or not. RESET is basically an F-test where the
restricted model is the "original" model and the unrestricted model is a polynomial approximation including the predicted $y_{t}^{\prime} \mathrm{s}$ squared, cubed, etc., as explanatory variables. The general foundation of the test is that if the model is improved by artificially including powers of the predicted values, then the original model must not have been adequate.

RESET is a simple test with the null hypothesis is that your functional form is correct, the alternative is that it is not. We will talk about two variants of the RESET test; RESET(1) and RESET(2). The first adds only \hat{y}^{2} to the model and tests its significance using the t-test. The second adds both \hat{y}^{2} and \hat{y}^{3} and tests their joint significance.

Estimate the regression assuming the functional form is correct and obtain the coefficient estimates, calculate the predicted values. We will illustrate these tests using the family income regression where the family income is the dependent variables and the education of the husband and wife are the explanatory variables.

$$
F A M I N C=\beta_{1}+\beta_{2} H E+\beta_{3} W E+e
$$

The unrestricted model includes the squares of the predicted y for $\operatorname{RESET}(1)$ and both squares and cubes of the predicted y for RESET(2).

RESET (1)

$$
y_{t}=\beta_{1}+\beta_{2} H E_{t}+\beta_{3} W E_{t}+\gamma_{1} \hat{y}_{t}^{2}+e
$$

RESET(2)

$$
y_{t}=\beta_{1}+\beta_{2} H E_{t}+\beta_{3} W E_{t}+\gamma_{1} \hat{y}_{t}^{2}+\gamma_{2} \hat{y}_{t}^{3}+e
$$

Open edu_inc.xls. First estimate the "Restricted Model" where FAMINC is the $\underline{\mathbf{Y}}$-Range, and $H E$ and WE are the $\underline{\mathbf{X}}$-Range. Place the output on a new worksheet called "Restricted". Check the Residuals box. This is needed to obtain the predicted y-values, then click OK.

From the regression output, we will use the SSE to be used for the F-test. Below the regular regression output, you will observe the residual output. The residual option in the regression

96 Chapter 6

dialog box provides the predicted values and the errors associated with each observation. Since we will use the squares and cubes of the predicted column, we need to copy and paste this column next to our data. Highlight cells B25 to B453, which contain the predicted FAMINC. Choose Edit $>\mathbf{C o p y}$ from the menu bar. Move to the worksheet containing the original data. Go to cell G1 and Edit>Paste. Your data now looks like:

区 Microsoft Excel - edu_inc.xls							
(蒌 File Edit Yiew Insert Format Iools Data Window Help Adobe PDF							
M7 - fx							
	A	B	C	D	E	F	G
1	FAMINC	HE	WE	KL6	XTRA_X5	XTRA_X6	Predicted FAMINC
2	61651.8	12	12	1	11.01355	23.44493	86316.17544
3	82404	9	12	0	9.37219	22.59274	76921.6475
4	79531.2	12	12	1	12.4262	23.16608	86316.17544
5	27594	10	12	0	10.25664	23.01776	80053.15681
6	103194	12	14	1	11.7983	25.61441	95361.45784

Now create two new columns, YHAT2 and YHAT3 in columns H and I. However, before we create the square and the cube of the predicted values, we will need to make an adjustment for the RESET test to work. We will first create a column for the adjustment; in cell H 1 type adjusted yhat. In cell H 2 , type $=\mathbf{G 2 / 1 0 , 0 0 0}$ and copy it down the entire column.

FAMINC	HE	WE	KL6	XTRA_X5	XTRA_X6	Predicted FAMINC	adjusted yhat	
61651.8	12	12		1	11.01355	23.44493	86316.17544	8.631617544
82404	9	12	0	9.37219	22.59274	76921.6475	7.69216475	
79531.2	12	12	1	12.4262	23.16608	86316.17544	8.631617544	
27594	10	12	0	10.25664	23.01776	80053.15681	8.005315681	
103194	12	14	1	11.7983	25.61441	95361.45784	9.536145784	
73691.1	11	12	0	11.4462	24.16109	83184.66613	8.318466613	
79954.56	12	16	0	11.69595	26.28513	104406.7402	10.44067402	
71442	8	12	0	5.067864	16.52149	73790.13819	7.379013819	
77130.9	4	12	0	4.254293	17.90169	61264.10094	6.126410094	
77206.5	12	12	0	10.87064	21.94787	86316.17544	8.631617544	
122094	12	12	0	13.67145	25.39433	86316.17544	8.631617544	
108486	14	11	0	10.16985	22.11444	88056.55286	8.805655286	

Now, using the adjusted yhat, we will create two new cells. Insert>Column two new columns next to variable $W E$ and label tem yhat 2 and yhat3, respectively. Notice that the adjusted yhat cell has moved to column J. In cell D2, type $=\mathbf{J 2 \wedge}$ 2. In cell E2, type $=\mathbf{J 2 \wedge} \mathbf{3}$.

A	B	C	D	E	F	G	H	1	J
FAMINC	HE	WE	yhat2	yhat3	KL6	XTRA_X5	XTRA_X6	Predicted FAMINC	adjusted yhat
61651.8	12	12	$=\mathrm{J} 2^{2} 2$	$=+\sqrt{2} \times 3$	1	11.01355	23.44493	86316.17544	8.631617544
82404	9	12	87.8379454	823.2339135	0	9.37219	22.59274	76921.6475	7.69216475
79531.2	12	12	154.410422	1918.734626	1	12.4262	23.16608	86316.17544	8.631617544
27594	10	12	105.198644	1078.98451	0	10.25664	23.01776	80053.15681	8.005315681
103194	12	14	139.199765	1642.31989	1	11.7983	25.61441	95361.45784	9.536145784
73691.1	11	12	131.015449	1499.628766	0	11.4462	24.16109	83184.66613	8.318466613
79954.56	12	16	136.795246	1599.950362	0	11.69595	26.28513	104406.7402	10.44067402
71442	8	12	25.6832455	130.1591954	0	5.067864	16.52149	73790.13819	7.379013819
77130.9	4	12	18.0990089	76.998487	0	4.254293	17.90169	61264.10094	6.126410094
77206.5	12	12	118.170749	1284.591314	0	10.87064	21.94787	86316.17544	8.631617544

Highlight both cells D2 and E2. Copy the formulas down to row 429.

Now we have all the explanatory variables ready. Recall that when you perform a regression in Excel, all of the explanatory variables must be in adjacent cells, that is why we inserted the new columns next to the other explanatory variables.

For RESET(1), we will only use YHAT2.

We can now conduct the RESET(1). Since we are testing the significance of yhat2, we can either do a t-test or and F-test using the SSE from the unrestricted model (above) and the restricted model.

	Coefficients	Standard Error	t Stat	P-value
Intercept	80147.89156	43868.10724	1.82701959	0.068399627
HE	-2013.988986	2669.983808	-0.7543075	5
WE	-3490.936858	4106.98392	-0.850000	28

The t-statistic from the regression output of RESET(1) Unrestricted is 2.02 and the p-value is 0.044 . Since t-stat $>t$-critical and p-value $<\alpha$, we reject the null hypothesis; we have evidence to support model misspecification. Also, since in a single hypotheses test, $F=t^{2}, F=4.08$.

For RESET(2), go to Tools>Data Analysis>Regression.

This time use FAMINC in the $\underline{\mathbf{Y}}$-Range, and HE, WE, YHAT2 and YHAT3 as the $\underline{\mathbf{X}}$-Range. Place the output on a new worksheet called "Reset 2 Unrestricted".

ANOVA				
	$d f$	SS	MS	F
Regression	4	$1.44217 \mathrm{E}+11$	36054151749	22.20345943
Residual	423	$6.86871 \mathrm{E}+11$	1623807852	
Total		427	$8.31087 \mathrm{E}+11$	
	Coefficients	Standard Error	t Stat	P-value
Intercept	279165.3441	142130.1137	1.964153386	0.050166679
HE	-22010.89846	13844.86128	-1.589824413	0.112621469
WE	-31547.04547	19497.27245	-1.618023524	0.106402912
Yhat2	8521.538202	5175.350858	1.646562414	0.100390716
what3	-291.9788247	198.3673197	-1.471909915	0.14178879

This time we are testing the joint significance of YHAT2 and YHAT3. In other words, we test the hypotheses $\mathrm{H}_{0}: \gamma_{1}=\gamma_{2}=0$ versus the alternative that $\gamma_{1} \neq 0, \gamma_{2} \neq 0$, or both do not equal zero. For the joint test, open the template labeled " F-Test".

- Fill in the Data Input values for the F-test. $J=2, T=428$, and $K=4$.
- Next, we will copy the SSEs from the restricted and unrestricted models and paste it into the template. The SSE from the unrestricted model is cell C13 of the output above. So right-click on cell C13 from the regression output.
- Choose Copy, place the cursor in cell B8 of the F-test template, right click and choose Paste.
- Next, return to the "Restricted Model" regression output and copy the SSE from the output and paste it in cell C7.

Below are the results of the F-test; we reject the null hypotheses and conclude that the specification is inadequate.

Hypothesis Testing - F-Test	
Data Input	
J	2
N	428
K	4
SSE-RESTRICTED	$6.97033 \mathrm{E}+11$
SSE-UNRESTRICTED	$6.86871 \mathrm{E}+11$
ALPHA	0.05
Computed Values	
df-numerator	2
df-denominator	424
F	3.136414778
Right Critical value	3.01699839
Decision	Uull
p-value	0.044447774

Beware that the RESET results are different than those in your book. Although these results are valid, EXCEL will not be able to provide you with the same RESET values despite the adjustment we made above.

6.7 POOR DATA, COLLINEARITY AND INSIGNIFICANCE

When two or more explanatory variables are correlated, or collinear, the multiple regression model is unable to isolate individual affects on the dependent variable. Collinearity can cause high standard errors for the least squares estimators, resulting in t-tests that suggest the parameters are not significantly different from zero. Some strange results can occur, and we should be careful in interpreting our results when collinearity is present.

When there are one or more exact linear relationships between any of the explanatory variables, the least squares estimation process does not work. Many statistical packages will not even provide results, and will issue some type of error message. Excel does produce results, without any warnings or error messages but issues zeros for the standard errors.

More commonly, we face situations where the collinearity is not perfect, but can be "harmful". When linear relationships between our explanatory variables are strong enough, high standard errors, low t-statistics, and unstable estimates result. We should, therefore, look to see if our results are being affected by collinearity. There are several things to look at when trying to determine the existence of this type of problem, correlation and something we call an auxiliary regression.

To explore the ways of identifying collinearity, we will use cars.xls. Open the data set and first estimate the model of miles per gallon (MPG) as a function of the number of cylinders (CYL) in the engine.

The output from this simple regression indicates a strong negative linear relationship between the $M G P$ and $C Y L$ ．

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.777617509	A	
5	R Square	0.60468899		
6	Adjusted R Square	0.603675372		
7	Standard Error	4.913589267		
8	Observations	392		
9				
10	ANOVA			
11		df	SS	MS
12	Regression	1	14403.08286	14403.08286
13	Residual	390	9415.910199	24.14335948
14	Total	391	23818.99306	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	42.9155052	0.834866841	$514 \cap 40121$
18	CYL	－3．558078341	0.145675537	－24．42467981

Now add the car＇s engine displacement in cubic inches（ENG）and weight（WGT）to the model．

Regression		x
Input		
Input Y Range：	\＄4\＄1：\＄A\＄393 Ex	，
Input \underline{X} Range：	\＄8\＄1：\＄0．\＄393［⿴囗玉－	Cancel
\square Labels	onstant is Zero	Help
\square Confidence Level：	\％	
Output options		
O Output Range：	E＝	
－New Worksheet ply：	multiple W CYI ENG WGT	
O New Workbook		
Residuals		
\square Residuals	\square Residual Plots	
\square Standardized Residuals	\square Line Fit Plots	
Normal Probability \square Normal Probability Plots		

The output now shows a very different relationship between the MPG and CYL.

A28 f_{x}					
	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.836237128			
5	R Square	0.699292534			
6	Adjusted R Square	0.696967476			
7	Standard Error	4.296530924			
8	Observations	392			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	3	16656.444	5552.148001	300.7635141
13	Residual	388	7162.549057	18.46017798	
14	Total	391	23818.99306		
15					P
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	44.37096115	1.480685053	29.96650844	$5.3199 \mathrm{E}-103$
18	CYL	-0.267796747	0.413067325	-0.648312588)	0.517166276
19	ENG	-0.01267396	0.008250068	-1.536224886	0.125298269
20	WGT	-0.005707884	0.000713919	-7.995142549	1.50112E-14

The value of the coefficient of CYL is much smaller, the standard error much larger and the variable is not significant anymore. We can also test other hypothesis such as the significance of $E N G$ and joint significance of $C Y L$ and $E N G$. We will observe that $C Y L$ and $E N G$ are individually not significant at 5% level but jointly they are. Joint test can be conducted by estimating the restricted model where both of there parameters are zero and using the F-test template as described in the previous section. This can happen when we can not isolate their individual impact. The independent variables CYL, ENG and WGT are highly correlated with each other and therefore highly collinear. A simple way the check the strength of possible linearity is to look at the correlation matrix. Correlation measures the direction and strength of a linear relationship between two variables. Choose Tools>Data Analysis>Correlation and indicate the data range in the dialog box.

The correlation matrix is

	A	B	C	D
1		ENG	CYL	WGT
2	ENG	1		
3	CYL	0.950823	1	
4	WGT	0.932994	0.897527	

These results show the high degree of linearity between all of the variables. However, correlation only measures the pair-wise linearity between variables. A more complex linear relationship between several variables at a time is not detected by correlation.

To detect more complex linear relationships, we will use the coefficient of determination, R^{2}, introduced in chapter six. Recall that R^{2} is interpreted as the percent of the total variation in the dependent variable that is explained by the model, or the explanatory variables. This interpretation is very helpful now.

An auxiliary regression is a multiple regression, but one of the original explanatory variables is used as the dependent variable. We are not concerned with any of the regression output except the R^{2}, because it measures how much of the variation in that one explanatory variable is explained, or being determined by, the other explanatory variables. This is, then, a measure of collinearity.

We can estimate the auxiliary regressions where each explanatory variable is regressed on all the others.

Regressing ENG on CYL and WGT

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression S	tistics			
4	Multiple R	0.967809154			
5	R Square	0.936654558			
6	Adjusted R Square	0.936328874			
7	Standard Error	26.40496601			
8	Observations	392			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	2	4010374.266	2005187.133	2875.965578
13	Residual	389	271219.4474	697.2222299	
14	Total	391	4281593.714		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-151.5981681	4.870943525	-31.12295746	1.2538E-107
18	CYL	35.78843715	1.77531476	20.15892502	$2.1609 \mathrm{E}-62$
19	WGT	0.050436196	0.003565214	14.1467502	5.99868E-37

Regressing CYL on WGT and ENG

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.951263558			
5	R Square	0.904902357			
6	Adjusted R Square	0.904413423	\checkmark		
7	Standard Error	0.527378352			
8	Observations	392			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	2	1029.499563	514.7497815	1850.766256
13	Residual	389	108.1917635	0.278127927	
14	Total	391	1137.691327		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	2.215643749	0.14287129	15.50797046	$1.4281 \mathrm{E}-42$
18	ENG	0.014276314	0.000708188	20.15892502	$2.1609 \mathrm{E}-62$
19	WGT	0.000161476	8.72468E-05	1.850795374	0.064956881

Regressing WGT on ENG and CYL

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics		,	-	
4	Multiple R	0.933600095			
5	R Square	0.871609138			
6	Adjusted R Square	0.870949031			
7	Standard Error	305.1365283			
8	Observations	392			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	2	245881392.2	122940696.1	1320.405322
13	Residual	389	36219129.05	93108.30091	
14	Total	391	282100521.2		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	1372.356942	78.84466956	17.40583034	1.36052E-50
18	CYL	54.05697362	29.20742853	1.850795374	0.064956881
19	ENG	6.735339693	0.476105084	14.1467502	$5.99868 \mathrm{E}-37$

Check the R^{2} from each of these regressions. Any above 80% indicates strong collinearity which may adversely affect the precision with which you can estimate the parameters of the model containing all of these correlated variables. In our example, the $R^{2} s$ are approximately $94 \%, 90 \%$ and 87% respectively which are all well above the 80% threshold. Therefore, it is not surprising that it is difficult to isolate the individual contributions of displacement and number of cylinders to a car's gas mileage.

CHAPTER

Nonlinear Relationships

CHAPTER OUTLINE

7.1 Nonlinear Relationships
7.1.1 Summarize data and estimate regression
7.1.2 Calculating a marginal effect
7.2 Dummy Variables
7.2.1 Creating dummy variables
7.2.2 Estimating a dummy variable regression
7.2.3 Testing the significance of the dummy variables
7.2.4 Further calculations
7.3 Applying Dummy Variables
7.3.1 Interactions between qualitative factors
7.3.2 Adding regional dummy variables
7.3.3 Testing the equivalence of two regressions
7.4 Interactions Between Continuous Variables
7.5 Dummy Variables in Log-linear Models

7.1 NONLINEAR RELATIONSHIPS

The least squares estimation procedure we have been using is based on the assumption that the model is linear in the parameters, though not necessarily linear in the variables. We saw an example of nonlinearity in variable in Chapter 6 in the sales model with diminishing marginal returns to advertising expenditures. To allow for this effect, we included the square of advertising expenditures as another explanatory variable. By transforming the advertisement variable, we captured the diminishing marginal returns without violating the assumptions of the linear regression model.

Models that have parameters that are nonlinear require nonlinear least squares estimation. Although Excel is a powerful spreadsheet, it is not designed to be a complete econometric software package, and consequently it does not have the capabilities to estimate models that are nonlinear in the parameters. If you encounter such a problem, use econometric software such as Stata, EViews, Shazam, or SAS.

7.1.1 Summarize data and estimate regression

The following example will illustrate the flexibility that the polynomial terms can add to the linear regression model. We will use the wage equation:

$$
W A G E=\beta_{1}+\beta_{2} E D U C+\beta_{3} E X P E R+\beta_{4} E X P E R^{2}+e
$$

Get the summary statistics, Tools>Data Analysis>Descriptive Statistics.

Descriptive Statistics \times		
Input Input Range: Grouped By: \square Labels in First Row	$\$$ \$ $\$ 1: \$ D \$ 1001 \mid$ Columns Rows	
Output options Output Range: New Worksheet Ply: New Workbook Summary statistics Confidence Level for Mean: Kth Largest: Kth Smallest:	Summary Stats	

This will provide the summary statistics for WAGE, EDUC, EXPER and EXPER2 variables.

	A	B	C	D	E	F	G	H
1	wage		educ		exper		exper2	
2						,		
3	Mean	10.21302002	Mean	13.285	Mean	18.78	Mean	480.676
4	Standard Error	0.197536118	Standard Error	0.078050412	Standard Error	0.3575057	Standard Error	15.45983006
5	Median	8.79	Median	13	Median	18	Median	324
6	Mode	4.42	Mode	12	Mode	16	Mode	256
7	Standard Deviation	6.246640531	Standard Deviation	2.468170753	Standard Deviation	11.3188213	Standard Deviation	488.8827522
8	Sample Variance	39.02051792	Sample Variance	6.091866867	Sample Variance	128.1157157	Sample Variance	239006.3454
9	Kurtosis	7.051484348	Kurtosis	1.538729824	Kurtosis	-0.651950158	Kurtosis	1.379091453
10	Skewness	1.956193012	Skewness	-0.211964003	Skewness	0.333047432	Skewness	1.331582256
11	Range	58.159999	Range	17	Range	52	Range	2704
12	Minimum	2.03	Minimum	1	Minimum	0	Minimum	0
13	Maximum	60.189999	Maximum	18	Maximum	52	Maximum	2704
14	Sum	10213.02002	Sum	13285	Sum	18780	Sum	480676
15	Count	1000	Count	1000	Count	1000	Count	1000

To estimate the wage equation, open cps_small.xls. Highlight column D and insert a column using Insert>Column. Name the new column "EXPER2" and enter the formula =C2^2 and copy it down.

Estimate the model using Tools $>$ Data Analysis $>$ Regression.

Estimate a regression and use $W A G E$ as the $\underline{\mathbf{Y}}$-Range and EDUC, EXPER, EXPER2 as the $\underline{\mathbf{X}}$ Range. Name the output worksheet "Polynomial".

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression S	tistics					
4	Multiple R	0.520513263					
5	R Square	0.270934057					
6	Adjusted R Square	0.268738075					
7	Standard Error	5.341743073					
8	Observations	1000					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	3	10561.41522	3520.47174	123.3771891	$5.98228 \mathrm{E}-68$	
13	Residual	996	28420.08218	28.53421906			
14	Total	999	38981.4974				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	-9.817697044	1.054963555	-9.30619546	$8.19064 \mathrm{E}-20$	-11.88790328	-7.747490804
18	educ	1.210071834	0.0702378	17.22821381	2.03903E-58	1.072240787	1.347902881
19	exper	0.340949174	0.051431361	6.629207719	5.52183E-11	0.240022916	0.441875432
20	exper2	-0.005093062	0.001197941	-4.251512714	2.32293E-05	-0.00744384	-0.002742284

7.1.2 Calculating a marginal effect

Since the wage equation is nonlinear in variable "EXPER", the marginal effect (slope) must be calculated as follows:

$$
\frac{\partial E(W A G E)}{\partial E X P E R}=\beta_{3}+\beta_{4} 2 E X P E R
$$

The marginal effect needs to be evaluated at a specific point, such as the median. You can get the median from the summary statistics. The median for the EXPER variable is 18 from the output above. The marginal effect at the median is:

$$
\frac{\partial E(W A G E)}{\partial E X P E R}=0.340949174-0.005093062 * 2 * 18=0.157598937
$$

7.2 DUMMY VARIABLES

Dummy variables are binary (or indicator) variables that indicate the presence or absence of a characteristic. In this section, we will use dummy variables in a real estate example. Open utown.xls.

7.2.1 Creating dummy variables

In many examples in $P O E$ dummy variables have already been created and are ready to use. An important issue in the real estate industry is how to accurately predict the price of a house, based on several of its characteristics, including the ever-important "location, location, location". Economists commonly use a "hedonic" model of pricing based on several characteristics such as size, location, number of bedrooms, age, etc. Using a dummy variable, D_{t}, which is equal to 1 if the house is in a desirable neighborhood and is equal to 0 if the house is not in a desirable neighborhood captures the qualitative factor of location. Including this variable in the regression model will allow the intercept to be different for houses in desirable areas compared to the intercept for houses not in desirable areas. This variable has been stored as variable UTOWN.

We can also allow for different slopes for houses in different areas by including an interaction variable, the product of the dummy variable and one of the continuous explanatory variables.

7.2.2 Estimating a dummy variable regression

Estimating a dummy variables model is no different than estimating any other regression model. We will use the interaction slope dummy variable between the size of the house sqft and the dummy variable for university town, utown. This will allow for the extra square footage of living space in a good neighborhood affecting the price differently than a house not in a good neighborhood. The full model we will estimate is

$$
\begin{aligned}
P R I C E=\beta_{1}+ & \delta_{1} U T O W N+\beta_{2} S Q F T+\gamma(S Q F T \times U T O W N) \\
& +\beta_{3} A G E+\delta_{2} P O O L+\delta_{3} F P L A C E+e
\end{aligned}
$$

where P RICE $=$ the price of the house, in dollars
$U T O W N=1$ for houses near the university (desirable), 0 otherwise
SQFT = square feet of living area
$A G E=$ age of house in years
POOL $=1$ if house has a pool, 0 otherwise
$F P L A C E=1$ if house has a fireplace, 0 otherwise.
Note that this model contains two continuous explanatory variables (SQFT and AGE), and three dummy variables, capturing the qualitative characteristics of location; presence of a pool, and a
fireplace in addition to the utown variable. Let's now estimate this model. Open utown.xls. Label column G sqftXutown. In cell G2 create the interaction variable by typing =B2*D2.

Copy this formula down the column to row 1001.

=B2*D2				
C	D	E	F	G
	Utown	Pool	Fplace	sqitXUtown
6	0	0	1	0
5	0	0	1	
6	0	0	0	
1	0	0	0	+
0	0	0	1	

Zeros appear in column G down to row 482. Then sqft values appear after that. This is because the variable $U T O W N$ is equal to zero through row 482, then one after that.

Estimate a regression using $\underline{\text { Tools }}>\underline{\text { Data }}$ Analysis $>$ Regression, using column A as the $\underline{\mathbf{Y}}$ Range and columns B through G as the $\underline{\mathbf{X}}$-Range. Don't forget the include labels by checking the Labels box. Save to a new worksheet called Dummy and Interaction.

The parameter estimates and corresponding t-stats and p-values are

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	24.49998329	6.191721216	3.956893801	$8.13332 \mathrm{E}-05$
18	sqft	7.612176612	0.245176458	31.04774691	$1.8674 \mathrm{E}-148$
19	age	-0.190086388	0.051204606	-3.712290812	0.000216812
20	utown	27.45295601	8.42258204	3.259446555	0.001154208
21	pool	4.377164078	1.196691609	3.65772104	0.000267836
22	fplace	1.64917557	0.971956791	1.696758113	0.090055792
23	sqfiXutown	1.29940476	0.332047741	3.913307036	$9.72454 \mathrm{E}-05$

7.2.3 Testing the significance of the dummy variables

To test the significance of the University Town location, we test the individual null hypothesis using the t-test. From the output above, we conclude that all of the parameters are significant, using a one-tailed 5\% level test. (Remember that Excel reports p-values for a two-tailed test). To conclude that the δ_{1} is statistically different from zero means that there is a shift in the intercept for houses near the university. Similarly, concluding that γ is different from zero means that the marginal effect of the size of the house is different for houses near the university. But Excel doesn't know that we have allowed the intercept and the coefficient on SQFT to differ across observations. It is our responsibility to correctly determine the intercept and slope estimates. Looking at the original model that we estimated

Alternatively, we can test the significance of the location by testing the joint null hypothesis $H_{0}: \delta_{1}=0, \gamma_{1}=0$ against the alternative that at least one coefficient is not zero. To construct the F-test, we will run the following restricted model:

$$
\text { PRICE }=\beta_{1}+\beta_{2} S Q F T+\beta_{3} A G E+\delta_{2} P O O L+\delta_{3} F P L A C E+e
$$

And compare the SSEs from the restricted model and the unrestricted model (labeled Dummy and Interaction) using the F-test template. Since we are testing two hypothesis, $J=2$ with the other input data of $N=1,000$ and $K=7$.

7.2.4 Further calculations

When the $U T O W N$ is equal to one, the intercept is $\beta_{1}+\delta_{1}$ and when $U T O W N$ is zero the constant is simply β_{1}. Similarly, the coefficient on SQFT when UTOWN is one is equal to $\beta_{2}+\gamma$, and is equal to β_{2} when UTOWN is zero. We can calculate the estimates for these parameters on the Excel regression output worksheet.

In cell A26, type the label NewIntercept and in cell A27, type the label New Beta2.In cell B26, type = B17+B20 to calculate the intercept when $U T O W N$ is equal to one and type $=\mathbf{B 1 8 + B 2 3}$ to calculate the coefficient estimate for SQFT when UTOWN is equal to one in cell B27.

16		Coefficients
17	Intercept	24.49998329
18	sqft	7.612176612
19	age	-0.190086388
20	utown	4.45295601
21	pool	1.6494078557
22	fplace	1.29940476
23	squfXutown	
24		
25		$=+\mathrm{B} 17+\mathrm{B} 20$
26	New Intercept	$=\mathrm{B} 18+\mathrm{B} 23$

16		Coefficients
17	Intercept	24.49998329
18	sqft	7.612176612
19	age	-0.190086388
20	utown	4.45295601
21	pool	1.6496175557
22	fplace	1.29940476
23	sqfiXutown	
24		51.9529393
25		8.911581373
26	New Intercept	
27	New Beta2	

The estimated regression functions for the houses near the university is

$$
P R \hat{I} C E=24.5+27.453_{1}(1)+7.6122 S Q F T(1)+1.2994 S Q F T+
$$

$$
-0.1901 A G E+4.3772 P O O L+1.6492 \text { FPLACE }
$$

$$
P R \hat{I} C E=51.953+8.9116 S Q F T+-0.1901 A G E+4.3772 P O O L+1.6492 F P L A C E
$$

7．3 APPLYING DUMMY VARIABLES

In this section we will illustrate a variety of applications of dummy variables using cps＿small．xls．

7．3．1 Interactions between qualitative factors

First we will consider the interaction between two dummy variables，black and female in the following model：

$$
W A G E=\beta_{1}+\beta_{2} E D U C+\delta_{1} B L A C K+\delta_{2} F E M A L E+\gamma(B L A C K \times F E M A L E)+e
$$

Open cps＿small．xls．Label column K blackXfemale．In cell K2 create the interaction variable by typing $=$ F2＊E2．

	File Edit	yew Inse	Format	Iools D	ta window	Help Ad	be PDF					
	3	，炜	210 告的	\％回	显•31	$\cdots \mathrm{C}-1$	\％			48	\cdots	（3）\％AArial
	\％2	S Snagit	E＇｜Windo		－							
	RMINV	－XV	（ $=+$ F2＊E									
	A	B	c	D	E	F	G		H	1	J	K
1	wage	educ	exper	exper2	female	black	white		midwest	south		blackXfemale
2	3.57	12	0	0		0			1	0		＝＋F2＊E2
3	3.68	13	0	0	1	0			0	0	0	
4	3.79	12	0	0	1	0			0	0	1	

Copy this formula down the column to row 1001.

	A	B	C	D	E	F	G	H	I	J	K
1	wage	educ	exper	exper2	female	black	white	midwest	south	west	blackXfemale
2	3.57	12	0	0	1	0	1	1	0	0	0
3	3.68	13	0	0	1	0	1	0	0	0	0
4	3.79	12	0	0	1	0	1	0	0	1	0
5	4.14	12	0	0	0	0	1	0	0	1	0
6	4.42	13	0	0	1	0	1	1	0	0	0
7	4.42	12	0	0	0	1	0	0	0	0	0
8	4.58	12	0	0	1	0	1	1	0	0	0
9	4.79	12	0	0	0	0	1	0	1	0	0
10	4.86	12	0	0	0	0	1	1	0	0	0
11	5.16	13	0	0	1	0	1	0	0	1	0
12	5.16	12	0	0	0	0	1	0	0	1	0
13	5.16	16	0	0	1	0	1	0	0	0	0
14	5.53	12	0	0	0	0	1	0	1	0	0
15	8.49	16	0	0	1	0	1	0	0	0	0
16	12.89	16	0	0	0	0	1	0	1	0	0
17	3.16	13	1	1	0	0	1	0	0	1	0
18	3.68	12	1	1	1	1	0	0	0	0	1
19	4.04	11	1	1	1	1	0	0	0	0	1

Recall that you need the $\underline{\mathbf{X}}$-Range variables next to each other. Insert columns and organize the columns by copying and pasting.

\$3 Microsoft Excel - cps_small.xls					
: 区才] Eile Edit View Insert Format Iools Data Window He					
08 - fx					
	A	B	C	D	E
1	wage	educ	female	black	blackXfemale
2	3.57	12	1	0	0
3	3.68	13	1	0	0
4	3.79	12	1	0	0
5	4.14	12	0	0	0
6	4.42	13	1	0	0
7	4.42	12	0	1	0
8	4.58	12	1	0	0
9	4.79	12	0	0	0
10	4.86	12	0	0	0

Estimate a regression using $\underline{\text { Tools }}>\underline{\text { Data }}$ Analysis $>$ Regression, using column A as the $\underline{\mathbf{Y}}$-Range and columns B through E as the $\underline{\mathbf{X}}$-Range. Don't forget the include labels by checking the Labels box. Save to a new worksheet called "Interactions btw dummies".

The output will be:

	A	B	C	D	E	F	G
1	SUMMARY OUTPUT						
2							
3	Regression Statistics						
4	Multiple R	0.498160217					
5	R Square	0.248163601					
6	Adjusted R Square	0.245141144		SSE(Un	stricted)		
7	Standard Error	5.427244562					
8	Observations	1000					
9							
10	ANOVA						
11		df	SS	MS	F	Significance F	
12	Regression	4	9673.788784	2418.447196	82.106554	$2.92685 \mathrm{E}-60$	
13	Residual	995	29307.70862	29.45498353			
14	Total	999	38981.4974				
15							
16		Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
17	Intercept	-3.230327242	0.967499411	-3.33884156	0.000872491	-5.128900665	-133175382
18	educ	1.116823459	0.069714406	16.01998091	1.46665E-51	0.980019325	1.253627593
19	female	-2.552070371	0.359685641	-7.095280104	2.44952E-12	-3.257899842	-1.846240899
20	black	-1.831239486	0.895726469	-2.044418189	0.041175021	-3.588969205	-0.073509766
21	blackXfemale	0.587905222	1.216953881	0.483095729	0.629134045	-1.800185425	2.975995869

To test the joint hypothesis $H_{0}: \delta_{1}=0, \delta_{2}=0, \gamma_{1}=0$, we will need to estimate the restricted model and carry out an F-Test. Estimate the Restricted model, assuming the null hypothesis is correct.

Estimate a regression using $\underline{\text { Tools }}>\underline{\text { Data }}$ Analysis $>$ Regression, using column A as the $\underline{\mathbf{Y}}$-Range and columns B only as the $\underline{\mathbf{X}}$-Range. Save to a new worksheet called "Restricted."

We can now open the F-test template and fill in the Input data.

	A	B
1	Hypothesis Testing - F-Test	
2		
3	Data Input	
4	J	3
5	N	1000
6	K	5
7	SSE-RESTRICTED	31092.98589
8	SSE-UNRESTRICTED	29307.70862
9	ALPHA	0.05
10		
11	Computed Values	
12	df-numerator	3
13	df-denominator	995
14	F	20.2034547
15	Right Critical value	2.613848392
16	Decision	Reject Null
17	p-value	$1.02707 \mathrm{E}-12$

7.3.2 Adding regional dummy variables

Next, we can add dummy variables with several categories such as the regional dummies. Our model becomes:

$$
\begin{aligned}
W A G E=\beta_{1} & +\beta_{2} E D U C+\delta_{1} S O U T H+\delta_{2} M I D W E S T+\delta_{3} W E S T \\
& +\delta_{4} B L A C K+\delta_{5} \text { FEMALE }+\gamma_{1}(\text { BLACK } \times F E M A L E)+e
\end{aligned}
$$

Since the dummies are already present in the file, we simply estimate the model using $\underline{\text { Tools }}>\underline{\text { Data }}$ Analysis $>$ Regression, after arranging the columns for the $\underline{\mathbf{X}}$-Range variables.

Use column A as the $\underline{\mathbf{Y}}$-Range and columns B through H as the $\underline{\mathbf{X}}$-Range. Save to a new worksheet called "Regions."

The output will provide us with the unrestricted model to test the joint hypothesis of $H_{0}: \delta_{1}=0, \delta_{2}=0, \delta_{3}=0$.

§ Microsoft Excel - cps_small.xls					
:包 File Edit View Insert Format Iools Data Window Help Adobe PDF					
Q19 f_{x}					
	A	B	C	D	E
1	SUMMARY OUTPU				
2					
3	Regression Statistics				
4	Multiple R	0.503446397			
5	R Square	0.253458275		SSE (Unrestricted)	
6	Adjusted R Square	0.248190339			
7	Standard Error	5.416271996			
8	Observations	1000			
9					
10 ANOVA					
11		$d f$	SS	MS	F
12	Regression	7	9880.18308	1411.454726	48.11339696
13	Residual	992	29101.31432	29.33600234	
14	Total	999	38981.4974		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-2.455685517	1.050990434	-2.336544117	0.019661205
18	educ	1.102461555	0.069986191	15.75255832	4.56044E-50
19	midwest	-0.499562279	0.505628233	-0.988003134	0.323392031
20	south	-1.24428066	0.479427352	-2.595347668	0.009589076
21	west	-0.546183401	0.515397714	-1.059731906	0.289524538
22	female	-2.500920325	0.35997464	-6.947490311	$6.72343 \mathrm{E}-12$
23	black	-1.607663765	0.90343217	-1.779506884	0.075462774
24	blackXfemale	0.6464628	1.215207538	0.53197728	0.594860847

Under the null hypothesis, the restricted model is the full (unrestricted) model from the previous section. If we fill in the Data Inputs in the F-Test template for this test, we fail to reject the null hypothesis at 5\% level.

	A	B
1	Hypothesis Testing - F-Test	
2		
3	Data Input	
4	J	3
5	N	1000
6	K	8
7	SSE-RESTRICTED	29307.70862
8	SSE-UNRESTRICTED	29101.31432
9	ALPHA	0.05
10		
11	Computed Values	
12	df-numerator	3
13	df-denominator	992
14	F	2.345176344
15	Right Critical value	2.613875482
16	Decision	Fail to Reject Null
17	p-value	0.071445679

7.3.3 Testing the equivalence of two regressions

To test the equivalence of the wage equations for the south region versus the reminder of the country, we create an interaction variable for each variable in the regression model with the dummy variable south. In other words, our equation

$$
W A G E=\beta_{1}+\beta_{2} E D U C+\delta_{1} B L A C K+\delta_{2} F E M A L E+\gamma_{1}(B L A C K \times F E M A L E)+e
$$

becomes

$$
\begin{aligned}
W A G E= & \beta_{1}+\beta_{2} E D U C+\delta_{1} \text { BLACK }+\delta_{2} F E M A L E+\gamma_{1}(\text { BLACK } \times F E M A L E)+\theta_{1} \text { SOUTH } \\
& +\theta_{2}(E D U C \times S O U T H)+\theta_{3}(B L A C K \times S O U T H)+\theta_{4}(F E M A L E \times S O U T H) \\
& +\theta_{5}(B L A C K \times F E M A L E \times \text { SOUTH })+e
\end{aligned}
$$

First we have to create the interaction variables as explained in the previous section.

§ Microsoft Excel - cps_small.xls										
: 区-] Eile Edit Yiew Insert Format Iools Data Window Help Adobe PDF										
	A	B	C	D	E	F	G	H	1	J
1	wage	educ	black	female	blackXfemale	south	educXsouth	blackXsouth	femaleXsouth	blackXfemaleXsouth
2	3.57	12	0	1	0	0	= B2* ${ }^{\text {F }}$ 2	= $\mathrm{C} 2 * * 2$	$=+\mathrm{D} 2^{*} \mathrm{~F} 2$	=E2*F2
3	3.68	13	0	1	0	0				
4	3.79	12	0	1	0	0				
5	4.14	12	0	0	0	0				
6	4.42	13	0	1	0	0				
7	4.42	12	1	0	0	0				

After labeling and writing the formulas, copy the formulas for all 1,000 observations.
[3 Microsoft Excel - cps_small.xls

	:									
! \% 宜 =										
	A	B	C	D	E	F	G	H	1	J
1	wage	educ	black	female	blackXfemale	south	educXsouth	blackXsouth	femaleXsouth	blackXfemaleXsouth
2	3.57	12	0	1	0	0	0	0	0	0
3	3.68	13	0	1	0	0				
4	3.79	12	0	1	0	0				
5	4.14	12	0	0	0	0				
6	4.42	13	0	1	0	0				
7	4.42	12	1	0	0	0				
8	4.58	12	0	1	0	0				

Once the interaction variables are created, we estimate the model by $\underline{\text { Tools }}>\underline{\text { Data }}$ Analysis>Regression, using column A as the $\underline{\mathbf{Y}}$-Range and columns B through J as the $\underline{\mathbf{X}}$ Range. Save to a new worksheet called "FULL."

The results will give us the unrestricted model results.

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics			SSE(Unrestricted)	
4	Multiple R	0.505698656			
5	R Square	0.255731131			
6	Adjusted R Square	0.24896505			
7	Standard Error	5.413480648			
8	Observations	1000			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	9	9968.78134	1107.642489	37.7960513
13	Residual	990	29012.715	29.30577272	
14	Total	999	38981.4974		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-3.577535917	1.1513322	-3.107301191	0.001941864
18	educ	1.165847216	0.082408377	14.1471931	1.61003E-41
19	black	-0.431164992	1.348248998	-0.319796264	0.749190255
20	female	-2.754044353	0.425705319	-6.46936796	$1.54458 \mathrm{E}-10$
21	blackXfemale	0.067319743	1.906317869	0.035314018	0.971836465
22	south	1.302260038	2.114734976	0.615802951	0.538166125
23	educXsouth	-0.191725337	0.154239615	-1.243035629	0.214149011
24	blackXsouth	-1.744431965	1.826694979	-0.954966201	0.339827908
25	femaleXsouth	0.91193858	0.795976102	1.145685878	0.252202013
26	blackXfemaleXsouth	0.542832938	2.511153729	0.21616874	0.828900751

To test the hypothesis that there is no difference between the model for the south and the rest of the nation, we have to test the joint hypothesis $H_{0}: \theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=0$ against the alternative that at least one of the five hypotheses is not true. Under the null hypothesis, the restricted model will be

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.498160217			
5	R Square	0.248163601			
6	Adjusted R Square	0.245141144		SSE(Restricted)	
7	Standard Error	5.427244562			
8	Observations	1000		/	
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	4	9673.78878	2418.447196	82.106554
13	Residual	995	29307.70862	29.45498353	
14	Total	999	38981.4974		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-3.230327242	0.967499411	-3.33884156	0.000872491
18	educ	1.116823459	0.069714406	16.01998091	1.46665E-51
19	black	-1.831239486	0.895726469	-2.044418189	0.041175021
20	female	-2.552070371	0.359685641	-7.095280104	$2.44952 \mathrm{E}-12$
21	blackXfemale	0.587905222	1.216953881	0.483095729	0.629134045

If we input the Data into the F-Test template, we will get:

	A	B
1	Hypothesis Testing - F-Test	
2		
3	Data Input	J
4	N	5
5	K	1000
6	SSE-RESTRICTED	10
7	ALPHA	
8	SSE-UNRESTRICTED	
9		29307.70862
10	df-numerator	
11	Computed Values	
12	df-denominator	
13	F	
14	Right Critical value	
15	Decision	Fail to Reject Null
16	p-value	
17		0.05

7.4 INTERACTIONS BETWEEN CONTINUOUS VARIABLES

When we include the product of two continuous explanatory variables in a model, we alter the relationship between each of them and the dependent variable. Reporting and interpreting the results require care.

The model we use here is based on a "life-cycle" model of the effects of age and income on a person's expenditures on pizza. We believe that as a person ages, the marginal effect of income will probably change (the marginal propensity to spend on pizza probably falls). Since we assume that the effect of income depends on age, we include an interaction variable that is the product of these two variables. The model we will estimate is

$$
P I Z Z A=\beta_{1}+\beta_{2} A G E+\beta_{3} I N C O M E+\beta_{4}(I N C O M E \times A G E)+e
$$

where PIZZA = individual's annual expenditure on pizza, in dollars
$A G E=$ the age of the individual in years
$Y=$ the annual income of the individual, in dollars
Open pizza.xls to estimate the above model and create the interaction variable after arranging the order of the explanatory variables.

Copy the formula to all 40 cells.

区 Microsoft Excel - pizza.xls				
: 区- Eile Edit Yiew Insert Format Iools Data				
G2			f0 0	
	A	B	C	D
1	pizza	age	income	incomeXage
2	109	25	15000	375000
3	0	45	30000	1350000
4	0	20	12000	240000
5	108	28	20000	560000
6	220	25	15000	375000
7	189	35	30000	1050000
8	64	40	12000	480000
9	262	22	12000	264000
10	64	30	28000	840000
11	35	21	22000	462000
12	94	40	44000	1760000

Estimate the model.

	A	B	C	D	E
1	Regression Statistics				
2	Multiple R	0.622349295			
3	R Square	0.387318645			
4	Adjusted R Square	0.336261866			
5	Standard Error	126.996134			
6	Observations	40			
7					
8	ANOVA				
9		df	SS	MS	F
10	Regression	3	367043.25	122347.75	7.586037514
11	Residual	36	580608.65	16128.01806	
12	Total	39	947651.9		
13					
14		Coefficients	Standard Error	t Stat	P-value
15	Intercept	161.465432	120.6634096	1.338147434	0.189239689
16	age	-2.977423365	3.352100814	-0.88822608	0.380315589
17	income	0.009073877	0.003669598	2.472716864	0.01826628
18	incomeXage	-0.000160211	8.67343E-05	-1.847147792	0.072957528

The effect of age and income are no longer given by their estimated coefficients. Instead we must calculate the marginal effects.

To find the marginal effects of age and income, we take the first derivative of the pizza function, with respect to the variable of interest. We find that the marginal effect of age on pizza expenditures is $b_{2}+b_{4} Y$ and the effect of income is $b_{3}+b_{4} A G E$. These will be estimated and calculated using Excel. In cell A21, type the label AGE and in cell A22, type the label INCOME. In cell A24, type the label age effect and in cell A25, type the label income effect. In cell B24, type $=\mathbf{\$ B} \mathbf{\$ 1 6 + (B 1 8 * B 2 2)}$ and in cell B25, type $=\mathbf{\$ B} \mathbf{\$ 1 7 + (\$ B \$ 1 8 * B 2 1) . ~ T h i s ~ t e m p l a t e ~ c a n ~ n o w ~ b e ~}$ used to calculate the marginal effects, given different levels of age and/or income. Below is an illustration of two examples.

19			
20	INPUT	$\zeta \mathrm{EX} 1$	EX 2
21	AGE	30	50
22	INCOME	90,000	
23	OUTPUT		
24	age effect	$=\$ \mathrm{~B} \$ 16+\$ \mathrm{~B} \$ 18^{*} \mathrm{~B} 22$	$=\$ \mathrm{~B} \$ 16+\$ \mathrm{~B} \$ 18^{*} \mathrm{C} 22$
25	income effect	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18^{*} \mathrm{~B} 21$	$=+\$ \mathrm{~B} \$ 17+\$ \mathrm{~B} \$ 18^{*} \mathrm{C} 21$

The formulas provide us with the marginal effect of $A G E$ for incomes 90,00 and 25,000 and marginal effect of INCOME at age 30 and 50.

19			
20	INPUT	EX1	EX2
21	AGE	30	50
22	INCOME	90,000	25,000
23	OUTPUT		
24	age effect	-17.39642745	-6.982702279
25	income effect	0.004267542	0.001063319
26			

7.5 DUMMY VARIABLES IN LOG-LINEAR MODELS

Consider the model:

$$
\ln (W A G E)=\beta_{1}+\beta_{2} E D U C+\gamma_{1} F E M A L E+e
$$

The calculation of the exact effect of a dummy variable in log-linear model is slightly more complicated. We will use cps_small.xls data to illustrate the calculations. Label cell D1, $\ln ($ wage $)$ and type the formula in $\mathrm{D} 2=\ln (\mathrm{A} 2)$. Copy the formula down all the cells.

122 Chapter 7

D 2			$f \times=\mathrm{LN}(\mathrm{A} 2)$		
	A	B	C	D	
1	wage	educ	female	\ln (waqe)	
2	3.57	12		1	
	1.272566				
3	3.68	13	1	1.302913	
4	3.79	12	1	1.332366	
5	4.14	12	0	1.420696	
6	4.42	13	1	1.48614	
7	4.42	12	0	1.48614	
8	4.58	12	1	1.521699	
9	4.79	12	0	1.56653	

Estimate the log-linear wage equation by using \ln (wage) as the $\underline{\mathbf{Y}}$-Range and EDUC and FEMALE as the $\underline{\mathbf{X}}$-Range variables.

Regression		
Input		
Input Y R ange:	\$D\$1:\$D\$1001 -	OK
		Cancel
Input $\underline{\underline{X} \text { Range: }}$		
\square Labels	\square Constant is Zero	Help
\square Confidence Level:	\%	Δ
Output options		
O Output Range:	\# =	
(-) New Worksheet Ply:	Log-Linear Model	
O New workbook		
Residuals		
Residuals Standardized Residuals	\square Residual Plots Line Fit Plots	
Normal Probability \square Normal Probability Plots		

The results are:

We can calculate the exact effect of the female dummy given the output as:

17	Intercept	0.929035785
18	educ	0.102565817
19	female	-0.252603282
20		
21		
22		
23	marginal effect of female dummy	
24	$=100^{*}(E X P(B 19)-1)$	

The marginal effect will be a nonlinear function of the parameters:

22	
23	marginal effect of female dummy
24	-22.32240183
25	

Similarly, we can calculate other nonlinear marginal effects when we include interaction terms. Estimate the following model:

$$
\ln (W A G E)=\beta_{1}+\beta_{2} E D U C+\beta_{3} E X P E R+\gamma_{1}(E D U C \times E X P E R)+e
$$

First, we need to create the interaction variable and estimate this log-linear model using the \ln (wage) as $\underline{\mathbf{Y}}$-Range and EDUC, EXPER and educXexper as the $\underline{\mathbf{X}}$-Range variables.

§ Microsoft Excel - cps_small.xls					
: 区- Ef Ede Edit View Insert Format Iools Data window					
\% ํ.					
	A	B	C	D	E
1	wage	\ln (wage)	educ	exper	educXexper
2	3.57	1.272566	12	0	0
3	3.68	1.302913	13	0	0
4	3.79	1.332366	12	0	0
5	4.14	1.420696	12	0	0
6	4.42	1.48614	13	0	0
7	4.42	1.48614	12	0	0
8	4.58	1.521699	12	0	0
9	4.79	1.56653	12	0	0
10	4.86	1.581038	12	0	0
11	5.16	1.640937	13	0	0
12	5.16	1.640937	12	0	0

Given the coefficient estimates from the regression, we can calculate the approximate marginal effect of experience using

124 Chapter 7

16		Coefficients
17	Intercept	0.152782545
18	educ	0.134086013
19	exper	0.024916391
20	educXexper	-0.000962375
21		
22		
23	marginal effect of experience	
24	$=100^{*}\left(\mathrm{~B} 19+\mathrm{B} 20^{*} 16\right)$	
25		

The marginal effect will be again a nonlinear function of the parameters for education of 16 years.

22	
23	marginal effect of experience
24	0.951838471
25	

CHAPTER 8

Heteroskedasticity

Chapter Outline

8.1 The Nature of Heteroskedasticity
8.2 Using the Least Squares Estimator
8.3 The Generalized Least Squares Estimator
8.3.1 Transforming the model
8.3.2 Estimating the variance function
8.3.3 A heteroskedastic partition
8.4 Detecting Heteroskedasticity
8.4.1 Residual plots
8.4.2 The Goldfeld-Quandt test
8.4.3 Testing the variance function

8.1 THE NATURE OF HETEROSKEDASTICITY

In simple and multiple linear regression models of earlier chapters, we had assumed all the assumptions of the Classical Linear Regression (CLRM) model have been met.

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}
$$

where y_{i} is the dependent variable, x_{i} is the $i^{\text {th }}$ observation on the independent variable, β_{1} and β_{2} are the unknown parameters and e_{i} is the random error. The error assumptions of CLRM are:

$$
E\left(e_{i}\right)=0 \quad \operatorname{Var}\left(e_{i}\right)=\sigma^{2} \quad \operatorname{Cov}\left(e_{i}\right)=0
$$

One of the above mentioned assumptions of the linear regression model is that the variance of the error term and of the dependent variable is constant across all of the observations. If this assumption is not met, OLS estimator is still unbiased and consistent but the least square standard errors and the tests based on these standard errors are neither consistent nor asymptotically valid.

8.2 USING THE LEAST SQUARES ESTIMATOR

In Chapter 3, we introduced a model of food expenditures as a function of income. At each income level, a household chooses its level of food expenditures. It seems reasonable that households with higher incomes have more choices, anywhere from cheap and simple to extravagant food. This suggests that the variance for high-income households is greater than that of low-income households. The consequences of estimating the parameters using the least square estimator, if heteroskedasticity is present, are that the standard errors that Excel reports are wrong. Therefore, the t-statistics, p-values, and confidence intervals are also wrong. Let's return to that model and our Excel results to reconsider our assumptions about the variance of the model.

Open food.xls. Estimate the regression, using food expenditures as the $\underline{\mathbf{Y}}$-Range and income as the $\underline{\mathbf{X}}$-Range. Choose Line Fit Plots under the Residuals option to produce a chart of the estimated regression line. After some formatting, the graph should look like

As income increases, the data points are scattered further and further from the estimated regression line. The residuals, the vertical distances between the regression line and the individual observations, are getting larger as income increases. The graph above, therefore, suggests that σ^{2} is not constant, but is greater for larger income households indicating heteroskedasticity.

16		Coefficients	Standod Error	t Stat
17	Intercept	83.41600202	43.41016314	1.921577714
18	Income	10.20964297	2.093263531	4.877380614

Since, with heteroskedasticity, the reported standard errors are incorrect, we need a method for determining the correct standard errors for our least squares estimators. We can then recalculate our t-stats and confidence intervals with these heteroskedasticity adjusted standard errors.

One such adjustment is White's Heteroskedasticity Consistent Standard Errors, which for the simple regression model is.

$$
\operatorname{vâr}\left(b_{2}\right)=\frac{\sum\left[\left(x_{t}-\bar{x}\right)^{2} \hat{e}_{t}^{2}\right]}{\left[\sum\left(x_{t}-\bar{x}\right)^{2}\right]^{2}}
$$

The square root of this is the estimated standard error for b_{2}. Some statistical packages will calculate White's standard errors automatically. Excel does not, but we can use the standard Excel functions to calculate it "by hand".

Return to the data contained in food.xls. Estimate another regression, choosing the Residuals option.

- From the regression output, Copy the residuals from the residual output to the worksheet containing the original data and Paste these residuals in column C. Include the label.
- Label column D "ehat^2" and square the values in column C here by typing =C^2 in cell D2 and copy the formula down the column.
- Label column E "xbar". In cell E2 type =AVERAGE(B2:B41) where column B contains the income.
- Label column F "(x-xbar)^2". In cell F2 type =(B2-\$E\$2)^2. Recall that the dollar sign anchors the cell containing " $x b a r$ ".
- Label column G "numerator". In cell G2 type =F2*D2. Highlight cells F2 and G2, and copy these formulas down the columns.

区 Microsoft Excel-food.xls							
國 Eile Edit Yiew Insert Format Iools Data Window Help Adobe PDF							
	A	B	C	D	E	F	G
1	Food_Exp	Income	Residuals	ehat^2	xbar	(x-xbar)^2	numerator
2	115.22	3.69	-5.869584573	= $\mathrm{C} 2^{\prime 2}$	=+AVERAGE(B2:B41)	$=(\mathrm{B} 2-\$ \mathrm{E} \text { \$2 })^{\wedge} 2$	=F2*D2
3	135.98	4.39	7.743665349	59.96435			

- In cell F42, type $=\mathbf{S U M}($ F2:F41) to sum the column;
- in cell G42, type =SUM(G2:G41).
- Label B44, White's var($\boldsymbol{b}_{\mathbf{2}}$), and B45 White's se($\boldsymbol{b}_{\mathbf{2}}$).
- In cell C44, type =G42l(F42^2)
- and in cell C45, type =SQRT(C44).

The results are

37	482.55	27.14	122.0442878	14894.81		56.77999256	845727.1
38	438.29	27.16	77.58009497	6018.671		57.08180256	343556.6
39	587.66	28.62	212.0440162	44962.66		81.27473256	3654328.6
40	257.95	29.4	-125.6295053	15782.77		95.94692256	1514308.5
41	375.73	33.4	-48.68807716	2370.529		190.3089226	451132.79
42							$\mathbf{1 8 2 8 . 7 8 7 5 9 8}$
43							
44	Whites's var(b2)		$\mathbf{3 . 1 0 9 1 2 0 6 3 9}$				
45	White's se(b2)		$\mathbf{1 . 7 6 3 2 6 9 8 8}$				

Excel's regression output reports the standard error for b_{2} as 2.093263531 which is incorrect due to the existence of heteroskedasticity. White's standard error is actually different so are the corrected t-stat and confidence intervals. While it usually the case that the corrected standard errors, it is not always true as you can see from this example. You should recalculate and report the corrected t -stat and confidence interval, do not report those produced in the regression output.

8.3 THE GENERALIZED LEAST SQUARES ESTIMATOR

Since the least squares is inefficient in heteroskedastic models, we may wish to use Generalized Least Square (GLS) which is the Best Linear Unbiased Estimator. GLS estimator works by transforming the model into a homoskedastic one and applying OLS to the transformed model.

8.3.1 Transforming the model

Since we have $\operatorname{var}\left(e_{i}\right)=\sigma_{i}^{2}$, we can get constant error variance by dividing e_{i} by σ_{i}. To transform the model, we will weigh the observations using σ_{i}. For the food expenditure model,

$$
\frac{y_{i}}{\sigma_{i}}=\beta_{1} \frac{1}{\sigma_{i}}+\beta_{2} \frac{x_{i}}{\sigma_{i}}+\frac{e_{i}}{\sigma_{i}}
$$

We saw in the graph of the regression that the estimated error terms seem to get larger as income increases. So we can assume the variance of the model is proportional to income and can be modeled as $\operatorname{var}\left(e_{i}\right)=\sigma_{i}^{2} x_{i}$. It can be shown that, if we transform our original data by dividing all observations by the square root of x_{i}, the new, transformed model is homoskedastic and we can estimate the new model using least squares where the t-stats and confidence intervals are correct.

To estimate the food expenditure model, where we want to weight the data by $1 / \sqrt{x_{i}}$. Go back to the worksheet containing the original data on food expenditures and income.

- Label column C $\operatorname{SQRT}(x)$ and columns D, E and F, $I N T^{*}, X^{*}$ and Y^{*} respectively.
- In cell C2, type $=$ SQRT(B2), where cell B2 contains the first observation on income.
- In cell D2, type $=\mathbf{1 / C 2}$. This creates a new intercept term, not equal to one anymore.
- In cell E2, type =B2/C2.
- In cell F2, type =A2/C2.
- Highlight cells C2 through F2. Copy the formulas down the column.

§ Microsoft Excel－food．xls						
： \boldsymbol{x}_{1} File Edit View Insert Format Iools Data Window Help Adobe P						
	A	B	C	D	E	F
1	Food＿Exp	Income	SQRT（x）	INT＊	X^{*}	${ }^{*}$
2	115.22	3.69	＝SQRT（B2）	＝1／C2	＝＋B2／C2	＝＋A2／C2
3	135.98	4.39	2.095232684	0.47727396	2.095233	64.89971
4	119.34	4.75	2.179449472	0.458831468	2.179449	54.75695
5	114.96	6.03	2.455605832	0.407231481	2.455606	46.81533
6	187.05	12.47	3.531288717	0.283182736	3.531289	52.96933
7	243.92	12.98	3.602776707	0.277563691	3.602777	67.70334

Estimate a regression，using Y^{*} as the $\underline{\mathbf{Y}}$－Range and $I N T^{*}$ and X^{*} as the $\underline{\mathbf{X}}$－Range．
－Include labels and check the Labels box．
－Check the Constant is Zero box since we now have our new，transformed intercept term．
－Place the output on the worksheet named GLS and click OK．

The regression results are：

16		Coefficients	Standard Error	t Stat	P－value	Lower 95\％	Upper 95\％
17	Intercept	0	剘／A	剘／A	\＃\＃／A	\＃\＃／A	刺／A
18	INT＊	78.68408018	23.78872165	3.307621206	0.00206413	30.52633132	126.841829
19	X＊	10.45100906	1.385891228	7.541002387	4．61376E－09	7.645418968	13.25659915

The estimates，b_{1} and b_{2} ，differ from the original regression results．However，the interpretations are the same．Transforming the data in the manner we did changed a heteroskedastic model to a homoskedastic model；not the meanings of our estimates．The GLS standard errors are lower than those calculated using White＇s approximation．This is to be expected because the GLS procedure is more efficient and provides smaller standard errors，higher t－stats and narrower confidence intervals．

8.3.2 Estimating the variance function

In the above example, the observation's standard error (or what it is proportional to) is known. In most cases this information will not be known and we will have to estimate it. This turns the GLS estimator into feasible GLS (FGLS).

The first step is to choose a model for variance that is some function of the independent variables. A common model of the variance uses the exponential function:

$$
\sigma_{i}^{2}=\exp \left(\alpha_{1}+\alpha_{2} z_{i 2}+\ldots+\alpha_{s} z_{i s}\right)
$$

where the $z_{i s}$ are independent variables and α 's are the unknown parameters. Taking the natural logarithm, substituting the least squares residuals for the unobservable σ_{i}^{2}, and adding an error term gives you a regression model that can be estimated for α_{i}.

$$
\ln \left(\hat{e}_{i}^{2}\right)=\ln \left(\sigma_{i}^{2}\right)+v_{i}=\alpha_{i}+\alpha_{2} z_{i}+v_{i}
$$

where the \hat{e}_{i}^{2} are from least squares estimation of the original heteroskedastic regression model. Let $z_{i}=\log$ (income).

To estimate this model using the food expenditure data, go back to the worksheet containing the original data on food expenditures and income.

- Label column C \log (income) and type $=\ln (B 2)$ in cell C2.
- Copy and paste the residuals from the initial regression to column D.
- Label columns E and F, resid2 and log(resid2), respectively.
- In cell E2, type =D2^2, where cell D2 contains the first observation on residuals.
- In cell F2, type =LN(E2).
- Highlight cells E2 and F2 and copy the formulas down the column.

\$ Microsoft Excel - food.xls						
媢	File Edit	Yiew Insert		Iools Data	Window	Help Adobe
	A	B	C	D	E	F
1	Food_Exp	Income	log(income)	Residuals	resid2	$\log (\mathrm{resid} 2)$
2	115.22	3.69	=+LP「52)	-5.86958	= +D2 ${ }^{\text {n }}$	= LN(E2)
3	135.98	4.39	1.479329227	7.743665	59.96435	4.0937503
4	119.34	4.75	1.558144618	-12.5718	158.0503	5.0629134
5	114.96	6.03	1.796747011	-30.0201	901.2094	6.8037376
6	187.05	12.47	2.52332576	-23.6802	560.7542	6.3292827
7	243.92	12.98	2.563409711	27.98283	783.0389	6.6631824
8	267.43	14.2	2.653241965	39.03707	1523.893	7.3290233
9	238.71	14.76	2.691920819	4.599668	21.15694	3.0519682
10	295.94	15.32	2.729159164	56.11227	3148.587	8.0547089
11	317.78	16.39	2.796671393	67.02795	4492.746	8.4102194

Estimate a regression, using \log (resid2) as the $\underline{\mathbf{Y}}$-Range and \log (income) as the $\underline{\mathbf{X}}$-Range.
Include labels and check the Labels box. Place the output on the worksheet named FGLS and click OK. The regression results are:

	A1 -	f_{x} SUMMARY OUTPUT			
	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.572361183			
5	R Square	0.327597324			
6	Adjusted R Square	0.309902517			
7	Standard Error	1.720854788			
8	Observations	40			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	1	54.82554506	54.82554506	18.51375486
13	Residual	38	112.5309656	2.961341201	
14	Total	39	167.3565107		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.937795963	1.583105624	0.592377381	0.557106636
18	log(income)	2.329238722	0.541335797	4.302761307	0.000113872

8.3.3 A heteroskedastic partition

To illustrate a model with a heteroskedastic partition, we use a model of wages as a function of education and experience. In addition a dummy variable is included that is equal to one if the individual lives in a metropolitan area. This is an intercept dummy variable indicating people living in metropolitan areas make higher wages relative to those living in rural with similar level of experience and education.

First, open cps2.xls and highlight columns D through I and Edit>Delete the columns.

$$
\text { wage }_{i}=\beta_{1}+\beta_{2} \text { educ }+\beta_{3} \text { exper }+\beta_{4} \text { metro }_{i}+e_{i}
$$

Estimate the model using Tools>Data Analysis>Regression with WAGE as the $\underline{\mathbf{Y}}$-Range and EDUC, EXPER and METRO as the $\underline{\mathbf{X}}$-Range.

15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-9.913984218	1.075662517	-9.216630734	$1.77326 \mathrm{E}-19$
18	educ	1.233963998	0.069961261	17.63781812	$8.42574 \mathrm{E}-61$
19	exper	0.133243681	0.015231619	8.747834543	$9.13789 \mathrm{E}-18$
20	metro	1.524104206	0.431090949	3.535458611	0.000425795

Next, estimate each subset (metro and rural) separately using least squares and save the standard errors of the regression.

- Highlight all the columns of the data, including labels, choose $\underline{\text { Data }}$ - $\underline{\text { Sort }}$ from the menu bar.
- Click on the down-arrow in the Sort By box. Choose METRO.
- Check either Ascending or Descending option.
- Check the Header Row option, since we included the labels and click OK.

Looking at the METRO column, you will observe that the column will contain zeros till row 194 and after that row, METRO will be one.

182	16.21	12	29	0
183	16.28	18	26	0
184	16.37	12	22	0
185	16.94	13	29	0
186	18.12	14	12	0
187	18.17	16	9	0
188	18.33	12	40	0
189	21.25	16	9	0
190	22.1	16	21	0
191	25.42	18	34	0
192	26.98	12	45	0
193	27.26	16	3	0
194	2.07	12	7	1
195	2.12	12	35	1
196	2.54	16	20	1
197	2.68	12	24	1
198	3.09	13	4	1
199	3.17	12	22	1
200	3.2	12	23	1
201	3.27	12	4	1
202	3.32	12	11	1
203	3.32	13	3	1
204	3.34	18	15	1
205	3.39	13	7	1

Now we must estimate two regressions, using the first half of the data in the first one (METRO $=$ 0), and the second half of the data in the second regression (METRO $=1$). The only output we're interested in from these regressions is the estimated variance of the model.

Estimate a regression on the data, using cells A2 through A193 for the $\underline{\mathbf{Y}}$-Range and cells B2 through C193 for the $\underline{\mathbf{X}}$-Range. DO NOT include labels and don't include the METRO variable in column D. Place the output on a worksheet named "regression 1."

Repeat the procedures above, but now include cells A194 through A1001 as the $\underline{\mathbf{Y}}$-Range and cells B194 through C1001 as the $\underline{\mathbf{X}}$-Range. Save output to a worksheet named "regression 2."

In order to obtain a homoskedastic model, we will transform the data by using the estimated variances from each partition. The estimated variances of the models are what we are interested in; no other output from the regressions is important at this point. We divide the data on the first 193 observations by the square root of the estimated variance from a regression using just those observations, and divide the last 808 observations by the square root of the estimated variance obtained from the regression using just these data. Then we "pool" the transformed data and perform generalized least squares estimation to obtain the correct estimates.

The simplest thing to do at this point is to simply write down the values of the MS Residuals from the ANOVA tables of the regressions; metro and rural. From metro, the value is 31.8237318; from rural, it is 15.24298659 . Transform the first 193 observations using the square root of the estimated variance from rural and the rest of the observations using the square root of
the estimated variance from metro as shown in Section 8.3.1 of this manual. Estimate a regression, using wage* as the $\underline{\mathbf{Y}}$-Range and int*, edu*, exper* and metro* as the $\underline{\mathbf{X}}$-Range where the stars represent the transformed values for the intercept (int), years of education (edu), years of experience (exper) and dummy variable for metropolitan area (metro), respectively. Include all 1000 observations. Include labels and suppress the intercept by checking the Constant is Zero box.

8.4 DETECTING HETEROSKEDASTICITY

8.4.1 Residual plots

If the regression errors are homoskedastic, when we plot the residuals, there should be no systematic pattern evident. If the errors are heteroskedastic, we may be able to detect a particular pattern in the residuals and perhaps even discover the form of the heteroskedasticity.

Let's use the wage model to plot the least square residuals against the metro dummy. Open cps.xls. Delete all the columns except wage, educ, exper, metro and save the file as cps_modified.xls. Estimate a regression, wage as the \underline{Y}-Range and educ, exper and metro as the \underline{X}-Range. Under the Residuals options, choose Residual Plots. This will produce a graph of the residuals, plotted against each of the explanatory variables.

Let's look at the plot against the metro dummy variable. After formatting, it should look similar to this.

In this plot, the least squares residuals are grouped according to rural (metro $=0$) or metropolitan (metro=1). Wider variation of residuals at metro=1 indicates higher variance for these observations and evidence of groupwise heteroskedasticity.

8.4.2 The Goldfeld-Quandt test

Although plots are helpful in diagnosing heteroskedasticity, the Goldfeld-Quandt formally tests for equal variances. It is a type of F-test and the steps are to order the data based on variance, split the data into parts, compute the estimated variances, calculate the test statistic $G Q=\hat{\sigma}_{1}^{2} / \hat{\sigma}_{2}^{2}$, and compare to an F-critical value, based on $T_{1}-K$ numerator and $T_{2}-K$ denominator degrees of freedom. If heteroskedasticity is present, the GQ test statistic should be large, and we would reject a null hypothesis of equal variances.

Returning to the wage model, where metro F is 31.824 and rural F is 15.243 . Open a new worksheet and name it "GQ test". Create the following template to use for any Goldfeld-Quandt Test.

区 Microsoft Excel - food.xls		
:这] Eile Edit Yiew Insert Format Iools Data window Help Adobe PDF		
	A	B
$1 \quad$ Goldfeld-Quandt Test for Equal Variance		
2	Input Data	
3	T1	
4	T2	
5	K	
6	SigmaHatSquared1	
7	SigmaHatSquared2	
8	Alpha	0.05
9	Computed Values	
10	df-numerator	=B3-B5
11	df-denominator	=B4-B5
12	GQ	=B6/B7
13	e-tailed Test:Right Critical Value	$=F \mathbb{N} V(\mathrm{~B} 8, \mathrm{~B} 10, \mathrm{~B} 11)$
14	Decision	=IF(B12>B13,'Reject Ho",'Fail to Reject Ho")
15	p-value	=FDIST(B12,B10,B11)

Fill in the Input Data as $\mathbf{T 1}=808$ and $\mathbf{T 2}=193, K=2$, and Alpha should be .05 , for testing at the 5% level. From the metro worksheet, highlight cell D13 (the MS residual from the ANOVA table), right-click and choose Copy. Go back to GQ test worksheet and Paste the value into cell B6. Remember to always place the larger of the estimated variances in the numerator of the formula for the GQ test statistic. Copy cell D13 from the rural worksheet to cell B7 of GQ test. The resulting template is

	A	B
1	Goldfeld-Quandt Test for Equal Variance	
2	Input Data	
3	T1	808
4	T2	193
5	K	2
6	SigmaHatSquared1	31.8237318
7	SigmaHatSquared2	15.24298659
8	Alpha	0.05
9	Computed Values	
10	df-numerator	806
11	df-denominator	191
12	GQ	2.087762238
13	e-tailed Test:Right Critical Value	1.213925811
14	Decision	Reject Ho
15	p-value	$1.32044 \mathrm{E}-09$

Let's test for heteroskedasticity in the food expenditures model. Formally, we test the null hypothesis $H_{0}: \sigma_{i}^{2}=\sigma^{2}$ against the alternative $H_{1}: \sigma_{i}^{2}=\sigma^{2} x_{i}$.

Since the variance is an increasing function of income we have to sort the data in an ascending order by income. Open the original data on food expenditures and income, food.xls.

- Highlight both columns of the data, including labels, choose $\underline{\text { Data }}>\underline{\text { Sort }}$ from the menu bar.
- Click on the down-arrow in the Sort By box. Choose income.
- Check the Ascending option;
- Check the Header Row option, since we included the labels and click OK.

Looking at the column containing income, the numbers should be increasing as you look down the column.

צ Microsoft Excel - fooc		
: 区才] Eile Edit View Ins		
	- ${ }^{\text {\% }}$	Q Snagil
	J16	\checkmark
	A	B
1	Food_Exp	Income
2	115.22	3.69
3	135.98	4.39
4	119.34	4.75
5	114.96	6.03
6	187.05	12.47
7	243.92	12.98
8	267.43	14.2
9	238.71	14.76

Now we must estimate two regressions, using the first part of the data in the first one, and the second part of the data in the second regression. Because there is no natural dividing point, we will break the ordered sample into two equal halves. The only output we're interested in from these regressions is the estimated variance of the model.

Estimate a regression on the data, using cells A2 through A21 for the \mathbf{Y}-Range and cells B2 through B21 for the $\underline{\mathbf{X}}$-Range. Do NOT include labels. Place the output on a worksheet named "regression 1."

Repeat the procedures above, but now include cells A22 through A41 as the $\underline{\mathbf{Y}}$-Range and cells B22 through B1 as the $\underline{\mathbf{X}}$-Range. Save output to a worksheet named "regression 2."

Fill in the Input data. $\mathbf{T 1}$ and $\mathbf{T 2}$ both equal 20, $K=2$ and Alpha should be .05 , for testing at the 5% level.

- From the regression 1 worksheet, highlight cell D13 (the MS residual from the ANOVA table), right-click and choose Copy.
- Go back to GQ test worksheet and Paste the value into cell B7. Remember to always place the larger of the estimated variances in the numerator of the formula for the GQ test statistic.
- Copy cell D13 from the regression 2 worksheet to cell B6 of GQ test.

The resulting template is

	A	B
1	Goldfeld-Quandt Test for Equal Variance	
2	Input Data	
3	T1	20
4	T2	20
5	K	2
6	SigmaHatSquared1	12921.92662
7	SigmaHatSquared2	3574.77175
8	Alpha	0.05
9	Computed Values	
10	df-numerator	18
11	df-denominator	18
12	GQ	3.614755716
13	e-tailed Test:Right Critical Value	2.217197134
14	Decision	Reject Ho
15	p-value	0.00459643

We reject the null hypothesis and conclude that heteroskedasticity IS present. If we assume proportional heteroskedasticity, we would proceed as in section 11.3. If we couldn't assume any particular form of the heteroskedasticity, then we should at least calculate White's standard errors and report the corrected t-statistics and confidence intervals.

8.4.3 Testing the variance function

There are many other tests to test for the existence of heteroskedasticity. In this section, two more of these tests will be discussed; Breusch-Pagan and White's tests. In both of the tests the null is homoskedastic errors and alternative is heteroskedastic errors. Both of the tests also require auxiliary regressions.

First, we will illustrate the Breusch-Pagan test using the food expenditure data. Open the original series, food.xIs and estimate the regression, click the residual option to save the residuals. Then, copy and paste the residuals to column C in the data sheet. Label D1 "resid2" and type $=\mathrm{C}^{\wedge}{ }^{\wedge} 2$ in D 2 .

§ Microsoft Excel - FOODHETEROTEST.xls				
: 区id Eile Edit Yiew Insert Format Iools Da				
\% \% \% =				
D2			$\mathrm{f}_{\mathrm{x}}=\mathrm{C} 2{ }^{\text {n }}$	
	A	B	C	D
1	Food Exp	Income	Residuals	resid2
2	115.22	3.69	-5.86958	34.45202
3	135.98	4.39	7.743665	59.96435
4	119.34	4.75	-12.5718	158.0503

Next, regress residuals on income.

The test statistic $(L M)$ is calculated by multiplying the $N^{*} R^{2}$ and has a χ_{s-1}^{2} distribution.

	A	B
1	SUMMARY OUTPUT	
2		
3	Regression Statistics	
4	Multiple R	0.429663369
5	R Square	0.184610611
6	Adjusted R Square	0.163152996
7	Standard Error	9946.64208
8	Observations	40
9		
10	ANOVA	
11		$d f$
12	Regressin	1
13	Residual	38
14	Total	39
15		
16		Coefficients
17	Intercept N*R Square -5762.369835	
18	Income	682.232583
19		
20		
21		
22	LM=	7.384424443
23	CHI-CRITICAL	3.841459149
24	P-VALUE	0.006579112

White's test is just a minor modification to Breush-Pagan test. Add one more column to the data and label it income2. This column will contain the squared income variable. After putting in the formula and copying it down, regress resid2 on income and income2. Recall that you need to get the income and income 2 in adjacent columns to be able to run the regression. The test statistic is again the product of N and R^{2} which has a χ_{s-1}^{2} distribution.

	A	B
1	SUMMARY OUTPUT	
2		
3	Regression Statistics	
4	Multiple R	0.434599775
5	R Square	0.188876964
6	Adjusted R Square	0.145032476
7	Standard Error	10053.75429
8	Observations	40
9		
10	ANOVA	
11		df
12	Regression	2
13	Residual	37
14	Total	39
15		
16		Coefficients
17	Intercept	-2908.78281
18	income2	11.16528894
19	Income	291.7457265
20		
21	N* R Square	
22	+	
23		
24		
25	$\mathrm{LM}=7.555078561$	
26	CHI-CRITICAL	3.841459149
27	p-value	0.2287893

The results for both of the tests indicate a rejection of the null hypothesis of no heteroskedasticity.

CHAPTER 9

Dynamic Models, Autocorrelation, and Forecasting

CHAPTER OUTLINE

9.1 Lags in the Error Term
9.2 Area Response for Sugar
9.3 Estimating an AR(1) Model
9.3.1 Least squares

9.4 Detecting Autocorrelation
9.4.1 The Durbin-Watson test 9.4.2 An LM test
9.5 Autoregressive Models
9.6 Finite Distributed Lags
9.7 ARDL Model

9.1 LAGS IN THE ERROR TERM

The multiple linear regression model of Chapters 5 and 6 assumed that the observations are not correlated with one another. This assumption is not realistic if the observations are drawn sequentially in time. With times-series data, where the observations follow a natural ordering through time, there is a possibility that successive errors are correlated with each other. Shocks to a model may take time to work out and effects may carry over to successive time periods. The result is that the error term in period t can affect the error term in period $t+1$, or $t+2$, and so on. Somehow, we must take these lasting effects into account.

In the first example the supply response for an agricultural crop is modeled as a log-log linear model where area planted (acres) depends on price. The first dynamic model we will consider is one with a lag in the error term.

$$
\begin{gathered}
\ln \left(A_{t}\right)=\beta_{1}+\beta_{2} \ln \left(P_{t}\right)+e_{t} \\
e_{t}=\rho e_{t-1}+v_{t}
\end{gathered}
$$

Where ρ（rho）is the parameter that describes the relation between e_{t} and e_{t-1}, v_{t} is the new random error term．For stability（and stationarity）of the model，$-1<\rho<1$ ．

9．2 AREA RESPONSE FOR SUGAR

First，we will estimate the above mentioned model using least squares．Open bangla．xls．
－Label columns C and D as $L N(P)$ and $L N(\mathrm{~A})$ respectively．
－In cell C2，type＝LN（A2），copy this formula to cell D2．
－Highlight cells C2 and D2，and copy the formulas down the columns．

उ Microsoft Excel－bangla．xls				
：区才才］Eile Edit view Ins			ert Format	Iools D．
2 \％				
K3			${ }_{\text {f }}$	
	A	B	c	D
1	p	a	LN（P）	LN（A）
2	0.749	28.96	$=\operatorname{LN}(\mathrm{A} 2)$	＝LN（ B2 $^{\text {2 }}$
3	1.093	67.81	0.088926	4.21671
4	0.92	55.15	－0．08338	4.010057
5	0.96	78.62	-0.04082	4.364626
6	0.912	60.15	-0.09212	4.09684

Estimate a regression，using $L N(A)$ as the $\underline{\mathbf{Y}}$－Range and $L N(P)$ as the $\underline{\mathbf{X}}$－Range．Include labels． Check the Residuals option so that the estimated errors are produced and click OK．

The least squares estimates are：

16		Coefficients	tandard Err	t Stat	P-value
17	Intercept	3.893255748	0.061345	63.46486	$3.12 \mathrm{E}-35$
18	LN(P)	0.776118781	0.27746 r	2.797154	0.008653

Since we are using times-series data, we should explore the possibility of autocorrelation. Visually, we can plot the residuals against time and see if we can detect any patterns.

Return to the worksheet containing the original data.

- Label cell E1 t, for time.
- Type " 1 " in cell E2.
- Type =E1+1 in cell E3.
- Highlight cells E2 and E3, place cursor on the lower right hand corner of the highlighted area until it turns into a cross-hatch.
- Left-click and drag down the column to fill in the values in ascending order.

³ Microsoft Excel - bangla.xis					
: 区ix Eile Edit Yiew Insert Format Iools Data Windov					
E3 $\quad f_{x}=E 2+1$					
	A	B	C	D	E
1	P	a	LN(P)	LN(A)	t
2	0.749	28.96	-0.28902	3.365916	1
3	1.093	67.81	0.088926	4.21671	2
4	0.92	55.15	-0.08338	4.010057	3
5	0.96	78.62	-0.04082	4.364626	4
6	0.912	60.15	-0.09212	4.096841	5
7	1.054	45.54	0.052592	3.818591	6
8	1.079	33.62	0.076035	3.515121	7
9	1.525	44.58	0.421994	3.797285	8

Return to the worksheet containing the regression output.

- Copy residuals to the worksheet containing the original data and Paste in column F.
- Create an XY Scatter graph with t on the horizontal axis and Residuals on the vertical axis.

The results will look like

Looking at the values of the residuals (ehat) and at the graph above, there seems to be a tendency for negative values to follow negative values, and positive values to follow positive values. This is consistent with positive correlation between successive terms. While such a conclusion about autocorrelation is subjective, we will later look at a more formal test. For now, however, it does appear that there is a problem.

We can also check the correlation between the ehat and the lagged values. Rename the residual column ehat, create a new column and call is ehat_1. Lag the ehat column by copying F2-F35 and paste it to G3. Delete F2 and G36 to make the columns even. Go to Tools>Data Analysis>Correlation. Put ehat and ehat_1 in the range and hit OK. The output indicates about . 40 correlation between the errors one period apart.

	A	B	C
1		ehat	ehat_1
2	ehat	1	
3	ehat_1	0.403997	1

9.3 ESTIMATING AN AR(1) MODEL

When the errors follow and $\operatorname{AR}(1)$ model, $e_{t}=\rho e_{t-1}+v_{t}$, the least squares assumption 4 is violated. Least squares is unbiased and consistent, but no longer efficient. The reported standard errors are no longer correct, leading to statistically invalid hypothesis tests and confidence intervals.

9.3.1 Least Squares

In the previous chapter, we transformed our data so that we could move from a heteroskedastic model to a homoskedastic. The same type of procedure can be used to correct for first order autoregressive errors AR(1). Our objective is to transform the model

$$
y_{t}=\beta_{1}+\beta_{2} x_{t}+e_{t} \text { where } e_{t}=\rho e_{t-1}+v_{t}
$$

such that the autocorrelated term e_{t} is replaced by the uncorrelated error term v_{t}. After some substitution and rearranging, the transformed model we obtain is

$$
y_{t}-\rho y_{t-1}=\beta_{1}(1-\rho)+\beta_{2}\left(x_{t}-\rho x_{t-1}\right)+v_{t}
$$

All we need to do is to transform the dependent variable, intercept, and explanatory variable as above and proceed with the generalized least squares estimation. The first problem is ρ is unknown and must be estimated and observe that we now have $T-1$ observations since we lose the "first" one.

Estimate the original model and store the residuals. Since

$$
\hat{\rho}=\frac{\sum_{=2}^{T} \hat{e}_{2} \hat{e}_{t-1}}{\sum_{t=2}^{T} \hat{e}_{t-1}^{2}}
$$

and we already have our residuals from the least squares estimation，we＇re ready to go！
Return to the worksheet containing the original data and the residuals．Label cells G1，H1， and I1 as sum（et＊et－1），ssq（et－1），and rhohat respectively．In cell G2，type

＝SUMPRODUCT（F3：F35，F2：F34）

This corresponds to the numerator in the formula above．In cell H2，type

```
=SUMSQ(F2:F34)
```

This calculates the denominator．Finally，in cell I2，divide G2 by H2 by typing＝G2／H2．The result is 0.3992 ．

³ Microsoft Excel－bangla．xls									
：区id Eile Edit Yiew Insert Format Iools Data Window Help Adobe PDF									
！\％\％\％\％									
R21－fx									
	A	B	C	D	E	F	G	H	1
1	p	a	LN（P）	LN（A）	$t \quad$	Residuals	sum（ettet－1）	ssq（et－1）	rhohat
2	0.749	28.96	－0．289	3.3659	1	－0．303	1.19687375	2.9979	0.3992
3	1.093	67.81	0.0889	4.2167	2	0.2544			
4	0.92	55.15	－0．083	4.0101	3	0.1815			
5	0.96	78.62	－0．041	4.3646	4	0.5031			
6	0.912	60.15	－0．092	4.0968	5	0.2751			

Now，to deal with the issue of transforming the first observation for the transformed model，we have $y_{1}=\beta_{1}+x_{1} \beta_{2}+e_{1}$ with an error variance of $\operatorname{var}\left(e_{1}\right)=\sigma_{e}^{2}=\sigma_{v}^{2} /\left(1-\rho^{2}\right)$ ．The transformation that gets to where we want（a variance of σ_{v}^{2} ）is multiplication of the terms in the model，for the first observation，by $\sqrt{1-\rho^{2}}$ ．

Use the worksheet with columns $P, A, L N(P), L N(A)$ ．Label columns E，F，and G as y^{*} ，int＊ and x^{*} respectively．

\＄3 Microsoft Excel－bangla．xls							
：区才］Eile Edit Yiew Insert Format Iools Data Window Help Adobe PDF							
－A		B	C	D	E	F	G
1	p	a	LN（P）	LN（A）	${ }^{*}$	INT＊	X^{*}
2	0.749	28.96	－0．289	3.3659			
3	1.093	67.81	0.0889	4.2167			

- In cell E2, type $=$ SQRT(1-(0.3992^2))*D2.
- In cell F2, type $=\operatorname{SQRT}\left(1-\left(0.3992^{\wedge} 2\right)\right)$.
- In cell G2, type =SQRT(1-(0.3992^2))*C2.

The first observation for the transformed model is now complete. For the remaining observations:

- In cell E3, type =D3-(0.3992*D2).
- In cell F3, type =1-0.3992.
- In cell G3, type =C3-(0.3992*C2).
- Highlight cells E3 through G3. Copy the formulas down the columns.

	A	B	C	D	E	F	G
1	\mathbf{p}	\mathbf{a}	$\mathbf{L N}(\mathbf{P})$	$\mathbf{L N}(\mathrm{A})$	\mathbf{Y}^{*}	$\mathbf{I N T}^{*}$	\mathbf{X}^{*}
2	0.749	28.96	-0.289	3.3659	$=\mathrm{SQRT}\left(1-\left(0.3992^{\wedge} 2\right)\right)^{\star} \mathrm{D} 2$	$=\mathrm{SQRT}\left(1-\left(0.3992^{\wedge} 2\right)\right)$	$=\mathrm{SQRT}\left(1-\left(0.3992^{\wedge} 2\right)\right)^{\star} \mathrm{C} 2$
3	1.093	67.81	0.0889	4.2167	$=\mathrm{D} 3-\left(0.3992^{\star} \mathrm{D} 2\right)$	$=1-0.3992$	$=\mathrm{C} 3-\left(0.3992^{\star} \mathrm{C} 2\right)$
4	0.92	55.15	-0.083	4.0101			

Run a regression, using y^{*} as the $\underline{\mathbf{Y}}$-Range and int* and x^{*} as the $\underline{\mathbf{X}}$-Range. Include labels as usual AND suppress the intercept by checking the Constant is Zero box. Place output on a new worksheet names GLS and click OK.

The generalized least squares results are:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0	\#\#/A	剘/A	期/A
18	NT *	3.873889527	0.081947116	47.27304313	$3.50629 \mathrm{E}-31$
19	X^{*}	0.945993569	0.240753509	3.929303356	0.000427015

Once again, interpretations of the estimates are as usual. The price elasticity of sugar cane area response seems to be one.

9.4 DETECTING AUTOCORRELATION

We will consider two formal tests to test for the existence and extent of autocorrelation; Durbin Watson and $L M$ (Lagrange Multiplier) serial correlation tests. Both tests test the hypothesis $H_{0}: \rho$ $=0$ versus the alternative $H_{1}: \rho>0$. If ρ is zero, then no transformation is necessary and ordinary least squares estimation is BLUE.

9.4.1 The Durbin-Watson test

The Durbin-Watson test statistic uses the residuals from the least squares procedure and is closely related to $\hat{\rho}$. The statistic is

$$
d=\frac{\sum_{t=2}^{T}\left(\hat{e}_{t}-\hat{e}_{t-1}\right)^{2}}{\sum_{t=1}^{T} \hat{e}_{t}^{2}}
$$

It is approximately equal to $2(1-\hat{\rho})$.
If the estimated value of ρ is zero, the Durbin-Watson test statistic equals 2 . If the estimated value of ρ is one, the Durbin-Watson test statistic equals 0 . Therefore, a low value of the DW test statistic suggests the null hypothesis should be rejected. The distribution of the DW test statistic is difficult and Excel cannot compute the p-value associated with d, but tables are available for performing the hypothesis test [see www.bus.lsu.edu/hill/poe], now called the Durbin-Watson bounds test.

$$
\begin{aligned}
& \sum_{i=2}^{T}\left(\hat{e}_{t}-\hat{e}_{t-1}\right)^{2}=\text { sum of squared differences }=\mathbf{S U M X M Y 2}(\mathbf{F} 3: \mathbf{F 3 5}, \mathbf{F} 2: \mathbf{F} 34)=3.54386803 \\
& \sum_{i=1}^{T} \hat{e}_{t}^{2}=\text { sum of squared residuals: }=\operatorname{SUMSQ}(\mathbf{F} 2: \mathbf{F} 35)=3.0316
\end{aligned}
$$

Using the formula above, we calculate the Durbin-Watson statistic to be $d \cong 1.169$ as follows: The least squares residuals for bangle.xls are stored in cells F2:F35 in the spreadsheet. The numerator and the denominator of the DW statistic can be obtained using the Excel functions SUMXMY2, and SUMSQ, respectively.

The decision rule for the Durbin-Watson bounds test is

- if $d>$ upper bound, fail to reject the null hypothesis of no serial correlation,
- if $d<$ lower bound, reject the null hypothesis and conclude that positive autocorrelation is present,
- if lower bound $<d<$ upper bound, the test is inconclusive.

With $T=34$ and $K=2$, the lower bound is 1.393 and the upper bound is 1.514 . Since $d<$ the lower bound, we reject the null hypothesis that ρ is zero, and find evidence of positive autocorrelation.

9.4.2 An LM test

Another way to test for autocorrelation is to use test whether residuals are correlated with one another using the $L M$ test. This test is based on the auxiliary regression where you regress least square residuals on the original regressors and lagged residual(s). If the auxiliary regression explains sufficient variation in \hat{e}_{t}, then we conclude there is autocorrelation.

Now, let's see how it works in Excel. Return to the worksheet containing the original data for bangla.xls, include the logs of the data, and the residuals.

- Insert a new column and label it lagged residuals.
- Write 0 into cell E2.
- In cell E3, type $=\mathbf{G} 2$, where G2 contains the first residual from the regression output and copy the formula down the column.

	A	B	C	D	E	F
1	p	a	LN(A)	Residuals	LN(P)	Lagged residuals
2	0.749	28.96	3.3659	-0.30302924	-0.289	0
3	1.093	67.81	4.2167	0.254436598	0.0889	-0.30302924
4	0.92	55.15	4.0101	0.181515067	-0.083	0.254436598
5	0.96	78.62	4.3646	0.503053127	-0.041	0.181515067
6	0.912	60.15	4.0968	0.275078133	-0.092	0.503053127

Once we created the lagged values of the residuals, we can now run the regression, using residuals as the $\underline{\mathbf{Y}}$-Range and $L N(P)$ and lagged residuals as the $\underline{\mathbf{X}}$-Range. Since the explanatory variables need to be next to each other, you will have to move some of the columns around. Do NOT suppress the intercept and name the worksheet $L M$ test. Click OK.

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.401259455		
5	R Square	0.16100915		
6	Adjusted R Square	0.106880708		
7	Standard Error	0.286438676		
8	Observations	34		
9				
10	ANOVA			
11		$d f$	SS	MS
12	Regression	2	0.488110715	0.244055357
13	Residual	31	2.543460566	0.082047115
14	Total	33	3.031571281	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	-0.00811623	0.057185889	-0.141927146
18	LN(P)	0.091601353	0.260933616	0.351052326
19	Lagged residuals	0.407821387	0.167202391	2.439088245

Recall that Excel reports a p-value based on a two-tailed test. We would conclude that $\rho>0$, testing at the 5% level, but we cannot reject the null hypothesis $H_{0}: \rho=0$ at the 1% level. The $L M$ scalar is calculated by $N^{*} R^{2}$ where N and R^{2} are the number of observations and the coefficient of determination in the auxiliary regression and has a $\chi_{(1)}^{2}$ distribution if the null hypothesis is true.
The test statistic value in this case is $34^{*} 0.16=5.44$. Wwe reject the null hypothesis and conclude that there is significant autocorrelation.

9.5 AUTOREGRESSIVE MODELS

In addition to incorporating lagged values of error term into a regression equation, we can add lagged values of dependent and/or independent variables. Autoregressive models include lags of the dependent variable as regressors. The $\operatorname{AR}(p)$ model has p lags of y_{t} as regressors.

$$
y_{t}=\delta+\theta_{1} y_{t-1}+\theta_{2} y_{t-2}+\ldots+\theta_{p} y_{t-p}+v_{t}
$$

We will use the inflation.xls to estimate an $\operatorname{AR}(3)$ model of inflation rate. Open the data file and add three columns and label them INFLAG1, INFLAG2 and INFLAG3. Copy the INFLN column and paste it to INFLAG1 starting from cell G4, to INFLAG2 starting from cell H5 and finally to INFLAG3 starting from cell I6 as shown below.

| | A | B | C | D | E | F | G | H | I |
| :---: | :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | YEAR | MONTH | WAGE | PCWAGE | CPI | INFLN | INFLAG1 | INFLAG2 | INFLAG3 |
| 2 | 1983 | 12 | 8.32 | | 101.4 | | | | |
| 3 | 1984 | 1 | 8.37 | 0.599163 | 102.1 | 0.687963 | | | |
| 4 | 1984 | 2 | 8.36 | -0.11955 | 102.6 | 0.488521 | 0.687963 | | |
| 5 | 1984 | 3 | 8.4 | 0.477328 | 102.9 | 0.291971 | 0.488521 | 0.687963 | |
| 6 | 1984 | 4 | 8.44 | 0.47506 | 103.3 | 0.387973 | 0.291971 | 0.488521 | 0.687963 |
| 7 | 1984 | 5 | 8.43 | -0.11855 | 103.5 | 0.193424 | 0.387973 | 0.291971 | 0.488521 |
| 8 | 1984 | 6 | 8.47 | 0.473374 | 103.7 | 0.19305 | 0.193424 | 0.387973 | 0.291971 |

Then, estimate the model using INFLN as the \mathbf{Y}-Range and INFLAG1 INFLAG2 and INFLAG3 as the $\underline{\mathbf{X}}$-Range variables. Since there area missing observations for each column, make sure to start from row 6, the first row for which there are no missing observations.

The result is:

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression St	tistics		
4	Multiple R	0.35957599		
5	R Square	0.129294893		
6	Adjusted R Square	0.119324987		
7	Standard Error	0.197246727		
8	Observations	266		
9				
10	ANOVA			
11		$d f$	SS	MS
12	Regression	3	1.513669915	0.504556638
13	Residual	262	10.19344305	0.038906271
14	Total	265	11.70711296	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	0.188335077	0.025290482	7.44687586
18	INF_LAG1	0.373292594	0.06148081	6.071692822
19	INF_LAG2	-0.21791892	0.064472475	-3.380030331
20	INF_LAG3	0.101254114	0.061267998	1.65264277

9.6 FINITE DISTRIBUTED LAG MODELS

Finite distributed lag models contain independent variables and their lags as regressors.

$$
y_{t}=\alpha+\beta_{0} x_{t}+\beta_{1} x_{t-1}+\beta_{2} x_{t-2}+\ldots+\beta_{q} x_{t-q}+v_{t}
$$

Using the inflation.xls, let's model the inflation rate as a function of the percentage change in wages and three lags of wages. Open the original file and add three columns. Label them pcwage_L1, pcwage_L2 and pcwage_L3. Copy the PCWAGE column and paste it to pcwage_L1 starting from cell F4, to pcwage_L2 starting from cell G5 and finally to pcwage_L3 starting from cell H6 as shown below.

| | A | B | C | D | E | F | G | H |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | YEAR | MONTH | CPI | INFLN | PCWAGE | pcwage_L1 | pcwage_L2 | pcwage_L3 |
| 2 | 1983 | 12 | 101.4 | | | | | |
| 3 | 1984 | 1 | 102.1 | 0.687963 | 0.599163 | | | |
| 4 | 1984 | 2 | 102.6 | 0.488521 | -0.11955 | 0.599163 | | |
| 5 | 1984 | 3 | 102.9 | 0.291971 | 0.477328 | -0.119546 | 0.599163 | |
| 6 | 1984 | 4 | 103.3 | 0.387973 | 0.47506 | 0.477328 | -0.119546 | 0.599163 |
| 7 | 1984 | 5 | 103.5 | 0.193424 | -0.11855 | 0.47506 | 0.477328 | -0.119546 |
| 8 | 1984 | 6 | 103.7 | 0.19305 | 0.473374 | -0.118554 | 0.47506 | 0.477328 |
| 9 | 1984 | 7 | 104.1 | 0.384986 | 0.471143 | 0.473374 | -0.118554 | 0.47506 |

Observe that we now have $T-n$ complete observations since we lose observations when we create the lags. Now run the regression with $T-n$ observations.

The least squares results are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.22007857			
5	R Square	0.048434577			
6	Adjusted R Square	0.033851199			
7	Standard Error	0.206596984			
8	Observations	266			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	4	0.567029064	0.141757266	3.321217936
13	Residual	261	11.1400839	0.042682314	
14	Total	265	11.70711296		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.121873261	0.048654677	2.504862205	0.012860034
18	pcwage	0.156088849	0.088501629	1.763683336	0.078955262
19	L1	0.10749781	0.085055032	1.263861846	0.207407246
20	L2	0.049485287	0.08525777	0.580419672	0.562132418
21	L3	0.199014534	0.087885431	2.264476969	0.024365444

9.6 AUTOREGRESSIVE DISTRIBUTED LAG MODELS (ARDL)

Finally, we consider a model that contains both finite distributed lags and is autoregressive.

$$
y_{t}=\delta+\delta_{0} x_{t}+\delta_{1} x_{t-1}+. .+\delta_{q} x_{t-q}+\theta_{1} y_{t-1}+\theta_{2} y_{t-2}+\ldots+\theta_{p} y_{t-p}+v_{t}
$$

ARDL (p, q) model has p lags of the dependent variable, y_{t} and q lags of the independent variable x_{t}. Let's illustrate ARDL $(2,3)$ model for the inflation data. Modify the inlation.xls to incorporate the two lags of INFLN and three lags of PCWAGE

	A	B	C	D	E	F	G	H	1	J
1	YEAR	MONTH	CPI	INFLN	PCWAGE	pcwage_L1	pcwage_L2	pcwage_L3	inf_l1	inf_12
2	1983	12	101.4							
3	1984	1	102.1	0.687963	0.599163					
4	1984	2	102.6	0.488521	-0.11955	0.599163			0.687963	
5	1984	3	102.9	0.291971	0.477328	-0.119546	0.599163		0.488521	0.687963
6	1984	4	103.3	0.387973	0.47506	0.477328	-0.119546	0.599163	0.291971	0.488521
7	1984	5	103.5	0.193424	-0.11855	0.47506	0.477328	-0.119546	0.387973	0.291971
8	1984	6	103.7	0.19305	0.473374	-0.118554	0.47506	0.477328	0.193424	0.387973
9	1984	7	104.1	0.384986	0.471143	0.473374	-0.118554	0.47506	0.19305	0.193424
10	1984	8	104.4	0.28777	0	0.471143	0.473374	-0.118554	0.384986	0.19305
11	1984	9	104.7	0.286944	0.468934	0	0.471143	0.473374	0.28777	0.384986

Observe the missing observations due to lags. Run the regression starting from the $6^{\text {th }}$ observation using the INFLN as $\underline{\mathbf{Y}}$-Range and PCWAGE, its three lags, and two lags of INFLN as the $\underline{\mathbf{X}}$ Range

The least squares results are:

154 Chapter 9

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.40904996			
5	R Square	0.16732187			
6	Adjusted R Square	0.148032029			
7	Standard Error	0.194005303			
8	Observations	266			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	6	1.958856029	0.326476005	8.674092797
13	Residual	259	9.748256934	0.037638058	
14	Total	265	11.70711296		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.098876586	0.046806866	2.112437633	0.0356062
18	PCWAGE	0.114903242	0.083390039	1.37790129	0.169423076
19	WL1	0.037733717	0.081245468	0.464440889	0.642722064
20	WL2	0.059274631	0.081173529	0.730221197	0.465914956
21	WL3	0.236130508	0.082944072	2.846864185	0.004768882
22	INFL1	0.353640184	0.06041118	5.853886373	1.44819E-08
23	INFL2	-0.197561316	0.06042121	-3.269734524	0.001222346

сhapter 10

Random Regressors and MomentBased Estimation

CHAPTER OUTLINE

10.1 Least Squares with Simulated Data
10.2 Instrumental Variables Estimation with Simulated Data
10.2.1 Correction of IV standard errors
10.2.2 Corrected standard errors for simulated data
10.3 The Hausman Test: Simulated Data
10.4 Testing for Weak Instruments: Simulated Data
10.5 Testing for Validity of Surplus Instruments:

Simulated Data
10.6 Estimation using Mroz Data
10.6.1 Least squares regression
10.6.2 Two-stage least squares
10.7 Testing for Endogeneity of Education
10.8 Testing for Weak Instruments
10.9 Testing for Validity of Surplus Instruments

10.1 LEAST SQUARES WITH SIMULATED DATA

When the explanatory variables are random, the relationship between x and the error term, e, is crucial in deciding whether ordinary least squares estimation is appropriate. If x and e are uncorrelated, then least squares can, and should, be used. However, if the $\operatorname{cov}(x, e) \neq 0$, then the least squares estimator is biased and inconsistent. In this case, instrumental variables (IV) / twostage least squares estimation process gives us a consistent but inefficient estimator. IV is not directly available in Excel as a built-in function. However, we will show that it is easy to perform IV estimation using Excel functions you are already familiar with.

We will use ch10.xls to explore the properties of the least squares estimator when $\operatorname{cov}(x, e) \neq$ 0 . The data set contains simulated data of sample size $100, \rho_{x e}=0.6$, where $E(y)=\beta_{1}+\beta_{2} x=1+1 x$ and $x_{i}, e_{i} \sim N(0,1)$.

First, get the summary statistics for the dataset where z_{1}, z_{2}, and z_{3} are the instrumental variables we will consider later. Go to Tools>Data Analysis>Descriptive Statistics

Below is a sample of the descriptive statistics provided by Excel.

	A	B	C	D	E	F	G	H	I	J
1	x		y		z1		z2		z3	
2										
3	Mean	0.2391607	Mean	1.3862871	Mean	0.0342066	Mean	0.1205662	Mean	0.062191
4	Std. Dev.	0.956655159	Std. Dev.	1.838818655	Std. Dev.	0.893107752	Std. Dev.	1.027655692	Std. Dev.	1.100069225
5	Minimum	-1.6484	Minimum	-2.96671	Minimum	-2.61576	Minimum	-2.29936	Minimum	-2.98265
6	Maximum	2.76628	Maximum	6.72735	Maximum	2.09323	Maximum	2.10895	Maximum	3.1457
7	Count	100								

Next estimate the simple regression of y on x using y as the $\underline{\mathbf{Y}}$-Range and x as the $\underline{\mathbf{X}}$-Range. Choose the $\underline{\text { Residuals option for future reference and place the output in a worksheet named LSE }}$ for random regress. Click OK.

The results are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression St	tistics			
4	Multiple R	0.88621922			
5	R Square	0.785384505			
6	Adjusted R Square	0.783194551			
7	Standard Error	0.856197583			
8	Observations	100			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	262.9028692	262.9028692	358.6305905
13	Residual	98	71.84128144	0.7230743	
14	Total	99	334.7441507		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.978893255	0.088280975	11.08838296	$5.35253 \mathrm{E}-19$
18	-	1.703431396	0.089949962	18.93754447	1.61396E-34

Notice that the estimated slope is 1.7 , when in fact the true slope of the artificial data is 1 . These results are due to the correlation between the error term and explanatory variable that has been built into the data.

10.2 INSTRUMENTAL VARIABLES ESTIMATION WITH SIMULATED DATA

Ch10.xls also contains two instrumental variables both of which are correlated to x yet uncorrelated with the error term. Since our problem is that the explanatory variable we are using is correlated with the error term, using these instrumental variables should help solve our problem.

We will estimate a reduced form or $\mathbf{1}^{\text {st }}$ stage regression $x_{i}=\alpha_{1}+\alpha_{2} z_{1 i}+e_{i}$ to obtain the predicted values of x_{i}, \hat{x}_{i}. Then, we use \hat{x}_{i} as an instrumental variable in the equation $y_{i}=\beta_{1}+$ $\beta_{2} \hat{X}_{i}+e_{i}$. Estimation of this equation is the " $2^{\text {nd }}$ stage". Thus the name, 2-stage least squares.

Return to the worksheet containing the simulated data, ch10.xls. Run a regression, using x as
 worksheet names $\mathbf{1}^{\text {st }}$ stage.

The "Predicted x " from the RESIDUAL OUTPUT is our instrumental variable.

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.533152714		
5	R Square	0.284251816		
6	Adjusted R Square	0.276948263		
7	Standard Error	0.81346731		
8	Observations	100		
9				
10	ANOVA			
11		$d f$	SS	MS
12	Regression	1	25.75427204	25.75427204
13	Residual	98	64.84944826	0.661729064
14	Total	99	90.60372029	
15		-		
16		Coefficier s	Standard Error	t Stat
17	Intercept	0.21962515	0.081406977	2.69787337
18	z1	0.57108895	0.091541632	6.23856256
19				
20				
21				
22	RESIDUAL OUTPUT	7		
23				
24	Observation	Predicted x	Residuals	
25	1	0.597543328	-1.279973328	
26	2	0.677518519	1.804681481	

Copy cells B24 through B124 containing Predicted x over to the worksheet containing the original data. Now run another regression, using y as the $\underline{\mathbf{Y}}$-Range and Predicted x as the $\underline{\mathbf{X}}$ Range. Place output on a worksheet named $\mathbf{2}^{\text {nd }}$ stage.

The results of this Two-Stage Least Squares Estimation are:

The IV estimate of the slope 1.19 is closer to the true value of 1 but the standard errors are incorrect.

10.2.1 Correction of IV standard errors

In the simple linear regression model $y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}$ the 2SLS estimator is the least squares estimator applied to $y_{i}=\beta_{1}+\beta_{2} \hat{x}_{i}+e_{i}$ where \hat{x}_{i} is the predicted value from a reduced form equation. So, the 2SLS estimators are

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\sum\left(\hat{x}_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}
\end{aligned}
$$

In large samples the 2SLS estimators have approximate normal distributions. In the simple regression model

$$
\hat{\beta}_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}\right)
$$

The error variance σ^{2} should be estimated using the estimator

$$
\hat{\sigma}_{2 S L S}^{2}=\frac{\sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)^{2}}{N-2}
$$

with the quantity in the numerator being the sum of squared 2SLS residuals, or $S S E_{2 S L s}$. The problem with doing 2SLS with two least squares regressions is that in the second estimation the estimated variance is

$$
\hat{\sigma}_{\text {wrong }}^{2}=\frac{\sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} \hat{x}_{i}\right)^{2}}{N-2}
$$

The numerator is the SSE from the regression of y_{i} on \hat{x}_{i}, which is $S S E_{\text {wrong }}$.
Thus correct 2SLS standard error is

$$
\operatorname{se}\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{2 S L S}^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{\hat{\sigma}_{2 S L S}^{2}}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\hat{\sigma}_{2 S L S}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}
$$

and the "wrong" standard error, calculated in the $2^{\text {nd }}$ least squares estimation, is

$$
s e_{\text {wrong }}\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{\text {wrong }}^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{\hat{\sigma}_{\text {wrong }}^{2}}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\hat{\sigma}_{\text {wrong }}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}
$$

Given that we have the "wrong" standard error in the $2^{\text {nd }}$ regression, we can adjust it using a correction factor

$$
\operatorname{se}\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{2 S L S}^{2}}{\hat{\sigma}_{\text {wrong }}^{2}}} \operatorname{se} \text { wrong }\left(\hat{\beta}_{2}\right)=\frac{\hat{\sigma}_{2 S L S}}{\hat{\sigma}_{\text {wrong }}} s e_{\text {wrong }}\left(\hat{\beta}_{2}\right)
$$

10.2.2 Corrected standard errors for simulated data

To correct the inflated standard errors and modify the t-statistic and p-value with the correct standard error, return to the worksheet containing the original data.

- Insert a new column and label it residuals $=y-b 1-b 2 x$.
- Calculate residuals using the coefficients from the 2SLS estimation. In other words, in cell G2, type $=y-1.101101099-1.192445082^{*}$ A2, where A2 contains the first observation on x. Copy the formula down the column.
- Label cell H1 sighat_2sls, cell H2 sighat_wrong, and cell H3 correction factor.
- In cell I1, type $=\mathbf{S Q R T}(\mathbf{S U M S Q (G 2 : G 1 0 1) / 9 8)}$ where 98 is T-K. This cell calculates the square root of correct mean of squared errors which is the sighat_2sls.
- In cell I2, type =SQRT(3.042), where 3.042 is the wrong MSE and its square root it the sighat_wrong.
- In cell I3, type =11/22 which calculates the correction factor.

This is our correct model standard error.

	A	B	C	D	E	F	G	H	I
1	x	\mathbf{y}	$\mathrm{z1}$	$\mathrm{z2}$	z 3	Predicted x	residuals=y $-b l-b 2 x$	sighat_2sls	0.987177
2	-0.68243	-0.55321	0.66175	-1.03449	-1.69849	0.597543328	-0.840580468	sighat_wrong	1.744133
3	2.4822	4.7472	0.80179	1.31019	2.44266	0.677518519	0.68632472	correction factor	0.565998
4	0.14934	1.53093	-1.95637	-1.1287	0.90907	-0.895334098	0.251756984		
5	0.4729	1.83448	-0.87638	0.44545	0.38953	-0.280864558	0.16949404		

Copy the correction factor, return to the worksheet $\mathbf{2}^{\text {nd }}$ stage and paste after the regression output. Then, create the corrected standard errors by multiplying the current standard errors with the correction factor. The correct t-stat will be obtained by dividing the coefficient estimates by the corrected standard errors. And you can calculate the correct p-value by typing =TDIST(D20,98,2) for a two-tailed test where D20 is the corrected t-stat.

	Coefficients	Standard Error	t Stat
Intercept	1.101101099	0.19281321	5.710713997
Predicted x	1.192445082	0.343684882	3.469588409
correction factor	0.56599844		
	Coefficients	Corrected Standard Error	Corrected t Stat
Intercept	1.101101099	$=+\mathrm{B} 21^{*} \mathrm{C} 17$	= $24 / \mathrm{C} 24$
Predicted x	1.192445082	$=+\mathrm{C} 18^{*} \mathrm{~B} 21$	$=\mathrm{B} 25 / \mathrm{C} 25$

The results will be:

	Coefficients	Standard Error	t Stat
Intercept	1.101101099	0.19281321	5.710713997
Predicted x	1.192445082	0.343684882	3.469588409
correction factor	0.56599844		
	Coefficients		
	Corrected Standard Error Corrected t Stat		
Intercept	1.101101099	0.109131976	10.08962851
Predicted x	1.192445082	0.194525107	6.130031753

The correct t-stat and p-value are quite different from those reported originally by Excel.

10.3 THE HAUSMAN TEST: SIMULATED DATA

Since we don't always know if the explanatory variables are endogenous or not, we can empirically check it using the Hausman test. We want to test $H_{0}: \operatorname{cov}(x, e)=0$ against the alternative $H_{1}: \operatorname{cov}(x, e) \neq 0$. The Hausman Test is a formal test of these hypotheses and can be based on using the residuals from the $1^{\text {st }}$ stage estimation of

$$
x_{i}=\gamma_{1}+\theta_{1} z_{i 1}+\theta_{2} z_{i 2}+v_{i}
$$

Denote the least squares residuals from the reduced form as \hat{v}_{i}. Include them in an artificial regression

$$
y_{i}=\beta_{1}+\beta_{2} x_{i}+\delta \hat{\delta}_{i}+e_{i}
$$

Estimate this model by least squares and test the significance of \hat{v}_{i} using a standard t-test.

$$
\begin{array}{ll}
H_{0}: \delta=0 & \text { no correlation between } x \text { and } e \\
H_{1}: \delta \neq 0 & \text { correlation between } x \text { and } e
\end{array}
$$

If the null hypothesis is true, the ordinary least squares estimators are more efficient and should be used. If the null hypothesis is not true, the instrumental variables estimator is consistent and should be used.

Return to the worksheet containing the data ch10.xls. Estimate a regression, using x as the \underline{Y} Range and z_{1} and z_{2} as the $\underline{\mathbf{X}}$-Range. Make sure to click the residual box to get the residuals. Place the results on a worksheet named Hausman step 1.

Regression		
Input		OK
Input Y Range:	\$A\$1:\$A\$101 En	
		Cancel
Input X Range:	\$C\$1:\$D\$101 -	
\checkmark Labels	Constant is Zero	Help
\square Confidence Level:	\%	
Output options		
Output Range:	츨	
() New Worksheet ply:	Hausman step 1\|	
O New Workbook		
Residuals		
Residuals \square Standardized Residuals	Residual Plots Line Fit Plots	
Normal Probability \square Normal Probability Plots		

Copy cells C25 through C125 which contain the Residuals to the worksheet containing the original data and Paste. Move the columns x and Residuals together. Now, run the $2^{\text {nd }}$ regression, using y as the \underline{Y}-Range and x and residuals as the \underline{X}-Range. Place the results on a worksheet named Hausman step 2. No need to store residuals for this step.

The regression output is:

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.919262166		
5	R Square	0.84504293		
6	Adjusted R Square	0.841847939		
7	Standard Error	0.731267595		
8	Observations	100		
9				
10	ANOVA			
11		df	SS	MS
12	Regression	2	282.873178	141.436589
13	Residual	97	51.87097263	0.534752295
14	Total	99	334.7441507	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	1.137590589	0.079746437	14.26509615
18	Residuals	0.995728288	0.162938901	6.111053161
19	X	1.039871983	0.133013055	7.817818964

Based on the t-test of the coefficient on Residuals, we reject the null hypothesis of no correlation between x and e, and conclude that instrumental variable estimation is the procedure in this case.

10.4 TESTING FOR WEAK INSTRUMENTS: SIMULATED DATA

Instrumental variables must be as strongly correlated with the endogenous variable as possible. A standard rule of thumb is that they will at least have a t-statistic of 3.3 or F-statistic of 10 in the reduced form regression.

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.2246167		
5	R Square	0.050452662		
6	Adjusted R Square	0.040763404		
7	Standard Error	0.936954039		
8	Observations	100		
9				
10	ANOVA			
11		df	SS	MS
12	Regression	1	4.571198885	4.571198885
13	Residual	98	86.03252141	0.877882871
14	Total	99	90.60372029	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	0.213950552	0.094344497	2.267758666
18	z2	0.209097976	0.091633243	2.281900853

From the above output, t-statistic for the second instrumental variable is 2.28 . Since the t statistics less than the rule of thumb of 3.3 , usage of this instrumental variable may not yield satisfactory results.

10.5 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS: SIMULATED DATA

In addition to being strongly correlated with the endogenous variable, a "good" instrument needs to be uncorrelated with the error term. We can test the validity of the instrument by an $L M$ test. $L M$ test uses 2SLS residual $\hat{e}_{2 S L S}$, as the dependent variable, and all the available exogenous and instrumental variables as independent variables. $L M$ statistic is calculated from this regression by $L M=N R^{2}$ which has $\chi_{(k)}^{2}$ where k is the number of surplus instrumental variables. Estimate an auxiliary regression using the $\hat{e}_{2 S L S}$ from the $2^{\text {nd }}$ step of 2SLS estimation, $y_{i}=\beta_{1}+\beta_{2} \hat{X}_{i}+e_{i}$ as the dependent variables and use instruments as the independent variable. The output is:

10.6 ESTIMATION USING THE MROZ DATA

We will use the Mroz data to illustrate the endogenous variables with real data. Open file mroz.xls. This is a log-linear wage model on working woman.

$$
\ln (W A G E)=\beta_{1}+\beta_{2} E D U C+\beta_{3} E X P E R+\beta_{4} E X P E R^{2}+e
$$

10.6.1 Least squares regression

The data set includes observations for non-working women. To eliminate the non-working woman, use the variable lfp (labor force participation). Delete the rows where $l f p=0$. Next, create
lwage $=\ln ($ wage $)$ and exper2=exper^2. Next, run the least squares regression model using the lwage as $\underline{\mathbf{Y}}$-Range and educ, exper, exper2 as $\underline{\mathbf{X}}$-Range. Include the labels, name the worksheet LSE and check the residual box. The results are:

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.396005544		
5	R Square	0.156820391		
6	Adjusted R Square	0.150854498		
7	Standard Error	0.666420217		
8	Observations	428		
9				
10	ANOVA			
11		df	SS	MS
12	Regression	3	35.02229655	11.67409885
13	Residual	424	188.3051439	0.444115905
14	Total	427	223.3274405	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	-0.522040561	0.198632066	-2.628178678
18	educ	0.107489639	0.01414378	7.598332013
19	exper	0.041566511	0.013175198	3.154906015
20	exper2	-0.000811193	0.000393242	-2.062833684

10.6.2 Two-stage least squares

In this example, educ is considered the endogenous variable as it could be correlated with factors in the regression error term such as ability. In the $1^{\text {st }}$ stage of the 2SLS estimation, we will estimate the first one by using the educ as $\underline{\mathbf{Y}}$-Range and exper, exper2 and mothereduc (the instrumental variable) as the $\underline{\mathbf{X}}$-Range. Keep the predicted values from the first stage to be used in the $2^{\text {nd }}$ stage.

	A	B	C	D
3	Regression Statistics			
4	Multiple R	0.390760937		
5	R Square	0.15269411		
6	Adjusted R Square	0.146699021		
7	Standard Error	2.111099613		
8	Observations	428		
9				
10	ANOVA			
11		$d f$	SS	MS
12	Regression	3	340.5378336	113.5126112
13	Residual	424	1889.658428	4.456741576
14	Total	427	2230.196262	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	9.77510269	0.423888615	23.06054547
18	exper	0.0488615	0.04166926	1.172603007
19	exper2	-0.001281065	0.001244906	-1.029045855
20	mothereduc	0.267690809	0.031129797	8.599182717

Observe that the mothereduc is a good instrument with a t-statistic of approximately 8.6 which is greater than the rule of thumb of 3.3

Estimate the $2^{\text {nd }}$ stage regression by using the lwage as $\underline{\mathbf{Y}}$-Range and exper, exper2 and predicted values of educ (from the previous regression) as $\underline{\mathbf{X}}$-Range.

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.21351507		
5	R Square	0.045588685		
6	Adjusted R Square	0.038835775		
7	Standard Error	0.709015788		
8	Observations	428		
9				
10	ANOVA			
11		df	SS	MS
12	Regression	3	10.18120435	3.393734782
13	Residual	424	213.1462361	0.502703387
14	Total	427	223.3274405	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	0.198186076	0.493342657	0.401720941
18	exper	0.044855849	0.014164402	3.166801513
19	exper2	-0.000922076	0.000423969	-2.174867605
20	Predicted educ	0.049262951	0.039056201	1.261334918

Do not forget to modify the standard errors, t-statistics and the p-values are described in the previous section. First we need to modify the model standard error.

Iwage	wage	educ	mothereduc	exper	exper2	fathereduc	residuals $=\mathrm{y}-b 1+b 2 e x p e r+b 3 e x p e r 2+b 4 e d u c$	sighat_2sls	0.678803546
1.210154	3.354	12	12	14	196	7	-0.026442777	sighat_wrong	0.709015515
0.328512	1.389	12	7	5	25	7	-0.66205676	correction factor	0.957388847
1.514138	4.546	12	12	15	225	7	0.259425652		
0.092123	1.097	12	7	6	36	7	-0.933158549		
1.524272	4.592	14	12	7	49	14	0.367595506		

Then, apply the new standard error to the coefficient standard errors, t-statistics and p-values.

	Coefficients	Standard Error	t Stat	P-value
Intercept	0.198186076	0.493342657	0.401720941	0.688091817
exper	0.044855849	0.014164402	3.166801513	0.001652599
exper2	-0.000922076	0.000423969	-2.174867605	0.030192088
Predicted educ	0.049262951	0.039056201	1.261334918	0.207881726
correction factor	0.957388847			
	Coefficients	Standard Error	t Stat	P-value
Intercept	0.198186076	0.472320758	0.419600606	0.688091817
exper	0.044855849	0.01356084	3.307748489	0.001652599
exper2	-0.000922076	0.000405903	-2.271665909	0.030192088
Predicted educ	0.049262951	0.037391972	1.317474004	0.207881726

10.7 TESTING THE ENDOGENEITY OF EDUCATION

We will use Hausman test to test whether educ is endogenous and correlated to the regression error term. First run the $1^{\text {st }}$ stage regression using educ as the $\underline{\mathbf{Y}}$-Range and all other explanatory variables as the $\underline{\mathbf{X}}$-Range. We only need the residuals from the $1^{\text {st }}$ step to use as an additional explanatory variable in the $2^{\text {nd }}$ stage. For the second stage, use the lwage as the $\underline{\mathbf{Y}}$-Range and educ, exper, exper2, and residuals as $\underline{\mathbf{X}}$-Range.

	A	B	C	D
1	SUMMARY OUTPUT			
2				
3	Regression Statistics			
4	Multiple R	0.402927346		
5	R Square	0.162350446		
6	Adjusted R Square	0.15442941		
7	Standard Error	0.665015919		
8	Observations	428		
9				
10	ANOVA			
11		$d f$	SS	MS
12	Regression	4	36.25730963	9.064327408
13	Residual	423	187.0701308	0.442246172
14	Total	427	223.3274405	
15				
16		Coefficients	Standard Error	t Stat
17	Intercept	0.048100303	0.394575257	0.121904001
18	educ	0.061396628	0.030984942	1.981498884
19	exper	0.044170394	0.013239447	3.336271785
20	exper2	-0.00089897	0.000395913	-2.27062255
21	Residuals -hausman	0.058166612	0.034807276	1.671104998

Based on the t-test of the coefficient on Residuals, we fail to reject the null hypothesis at 5% level of no correlation between x and e, and conclude that OLS estimation is appropriate. However, educ is endogenous at 10% level of significance.

10.8 TESTING FOR WEAK INSTRUMENTS

To test whether the relationship between the instruments and educ is strong enough, estimate the restricted and unrestricted reduced form equations and test the joint significance of the instruments. The unrestricted and restricted models have the following ANOVE tables:

10	ANOVA				
11		$d f$	$S S$	$M S$	F
12	Regression	4	471.6209892	117.9052496	28.36041288
13	Residual	423	1758.575263	4.15738833	
14	Total	427	2230.196262		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	9.10264011	0.426561367	21.33957927	$4.09847 \mathrm{E}-69$
18	mothereduc	0.157597033	0.035894116	4.390609167	$1.42984 \mathrm{E}-05$
19	exper	0.045225423	0.040250712	1.123593117	0.261822938
20	exper2	-0.001009091	0.0012033	-0.838571743	0.402183285
21	fathereduc	0.18954841	0.033756467	5.615173276	$3.56151 \mathrm{E}-08$

ANOVA				
	$d f$	+ SS	MS	F
Regression	2	10.97907328	5.489936639	1.051372495
Residual	425	2219.21638	5.22168562	
Total	427	2230.196262		
	Coefficients	Standard Error	t Stat	P-value
Intercept	12.369356	$0.32231304\}$	38.37684003	3.5283E-140
exper	0.056491946	0.045093499	1.252773616	0.210976963
exper2	-0.001904334	0.001345228	-1.415622479	0.157618444

Using the MSE from the above models, to test the instruments jointly, we can conduct an F-test where the unrestricted model has all exogenous variables and the restricted model has exper and exper2 as the explanatory variables. Recall that the rule-of-thumb threshold value for adequate instruments is an F-value of 10.0 .

	A	B
1	Hypothesis Testing - F-Test	
2		
3	Data Input	
4	J	2
5	N	428
6		5
7	SSE-RESTRICTED	5.22168562
8	SSE-UNRESTRICTED	- 4.15738833
9	ALPHA	0.05
10		
11	Computed Values	
12	df-numerator	2
13	df-denominator	423
14	F	54.1443
15	Right Critical value	3.017048903
16	Decision	Reject Null
17	p -value	$1.15768 \mathrm{E}-21$

10.9 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS

We can check the validity of the surplus instruments using the $L M$ test. For this purpose, we need to run an auxiliary regression where the residuals are the $\underline{\mathbf{Y}}$-Range and all the exogenous variables are the $\underline{\mathbf{X}}$-Range. We calculate the $L M$ test statistic as $N^{*} R^{2}$ which is 0.3780714 for this example.

CHAPTER
 11

Simultaneous Equations Models

CHAPTER OUTLINE

11.1 Truffle Supply and Demand
11.2 Estimating the Reduced Form Equations
11.3 2SLS Estimates of Truffle Demand and Supply
11.3.1 Correction of 2SLS standard errors
11.3.2 Corrected standard errors in truffle demand and supply
11.4 Supply and Demand of Fish
11.5 Reduced Forms for Fish Price and Quantity

In this chapter, we estimate simultaneous equation models where there are two or more dependent variables that need to be estimated jointly. Ordinary least squares estimation is not possible when we are dealing with more than one equation. For example to explain both price and quantity of a good, we need both supply and demand equations which work together to determine price and quantity jointly.

11.1 TRUFFLE SUPPLY AND DEMAND

Consider the supply and demand for truffles:

$$
\begin{aligned}
& \text { Demand: } Q_{i}=\alpha_{1}+\alpha_{2} P_{i}+\alpha_{3} P S_{i}+\alpha_{4} D I_{i}+e_{i}^{d} \\
& \text { Supply: } Q_{i}=\beta_{1}+\beta_{2} P_{i}+\beta_{3} P F_{i}+e_{i}^{s}
\end{aligned}
$$

In the demand equation, Q is the quantity of truffles traded at time (in ounces) P is the market price for truffles in dollars per ounce, $P S$ is the market price for substitutes for truffles in dollars per pound, and $D I$ is the per capita disposable income, in thousands of dollars. In the supply equation, $P F$ is the price of the factor of production. P and Q are endogenous variables meaning their values are determined within the system of equations. The equilibrium levels of price and
quantity, P^{*} and Q^{*} are determined by both of these equations. $P S, D I, P F$ are exogenous meaning that we take the values as given.

Open truffles.xls and obtain the summary statistics. Part of the print out is given below.

	A	B	C	D	E	F
1		p	q	ps	di	pf
2		62.72400013	18.45833333	22.0220001	3.526966667	22.7533334
3	Mean	Standard Deviation	18.72346189	4.613087857	4.077237313	1.040803254
4.329653589						
5	Minimum	29.639999	6.37	15.21	1.525	10.52
6	Maximum	105.449997	26.27	28.98	5.125	34.009998
7	Count	30	30	30	30	30

11.2 ESTIMATING THE REDUCED FORM EQUATIONS

The reduced form equation expresses each endogenous variable, P and Q, in terms of the exogenous variables $P S, D I, P F$. This can be accomplished by setting the structural equation equal to each other and solving for the endogenous variables.

$$
\begin{aligned}
Q_{i} & =\pi_{11}+\pi_{21} P S_{i}+\pi_{31} D I_{i}+\pi_{41} P F_{i}+v_{i 1} \\
P_{i} & =\pi_{12}+\pi_{22} P S_{i}+\pi_{32} D I_{i}+\pi_{42} P F_{i}+v_{i 2}
\end{aligned}
$$

These equations can be estimated by least squares since all independent variables are exogenous and uncorrelated with the error terms. We will estimate two regressions for the reduced form equations. Once we estimate these reduced form equations, we will obtain and store the predicted values of price, \hat{P}, and then estimate the structural equations using \hat{P} and the other exogenous variables using the 2SLS technique which was first introduced in Chapter 10.

First, estimate the quantity equation using Q as the $\underline{\mathbf{Y}}$-Range, and $P S, D I$ and $P F$ as the $\underline{\mathbf{X}}$ Range. Include labels and place results on the worksheet named reduced eq quant and Click OK.

Regression		X
Input		
Input Y Range:	\$B\$1:\$B\$31 E E	
Input $\chi_{\text {R }}$ Range:	\$C\$1:\$E\$31 E E	
\checkmark Labels	constant is Zero	Help
\square Confidence Level:		
Output options		
Output Range:	츨	
() New Worksheet Ply:	reduced eq quant	
O New Workbook		
Residuals		
\square Residuals	\square Residual Plots	
\square Standardized Residuals	\square Line Fit Plots	
Normal Probability \square Normal Probability Plots		

Next, estimate the regression for the price equation using P as the $\underline{\mathbf{Y}}$-Range and $P S, D I$ and $P F$ as the $\underline{\mathbf{X}}$-Range. Include labels and place results on a worksheet named reduced eq price. Make sure to include Residuals option to obtain the \hat{P} and click $\mathbf{O K}$.

The Quantity (Q) reduced form estimates are:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	7.895100328	3.243421325	2.434188944	0.022099332
18	ps	0.656402011	0.142537596	4.605114937	$9.53266 \mathrm{E}-05$
19	di	2.167156078	0.700473729	3.093843477	0.004680802
20	pf	-0.506982392	0.121261645	-4.180896549	0.000291281

The Price (P) reduced form estimates are:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-32.51242016	7.984235283	-4.072076912	0.000387308
18	ps	1.708147148	0.350880625	4.868171757	$4.75902 \mathrm{E}-05$
19	di	7.602492026	1.724335664	4.408939736	0.000159932
20	pf	1.353905695	0.298506239	4.535602665	0.000114523

All explanatory variables in both models are significant.

11.3 2SLS ESTIMATES OF TRUFFLE DEMAND AND SUPPLY

To obtain 2SLS estimates, we replace P in the structural equation with \hat{P} from the reduced form equation. To accomplish that, return to the worksheet containing the original data. Create an empty column next to the other explanatory variables as Excel requires all explanatory variables to be next to each other. Return to the reduced eq price worksheet and $\underline{\text { Copy cells B26 through }}$ B56 (Predicted p) to the original data worksheet. Estimate a regression of the structural demand equation using Q as the $\underline{\mathbf{Y}}$-Range and Predicted $p, P S$ and $P F$ as the $\underline{\mathbf{X}}$-Range. Include labels and place results on the worksheet named stage 2 demand.

Return to the worksheet containing the original data. Move the columns around so that phat and $P F$ are next to each other to estimate the structural supply equation since Excel requires the \mathbf{X} Range data to be contiguous. Estimate the regression, using Q as the $\underline{\mathbf{Y}}$-Range and Predicted p, and $P F$ as the $\underline{\mathbf{X}}$-Range. Include labels and place results on a worksheet names stage 2 supply.

The $2^{\text {nd }}$ stage regression results for demand equation are:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-4.279473279	3.013833748	-1.41994338	0.167504529
18	ps	1.296033361	0.193094429	6.711914817	$4.02707 \mathrm{E}-07$
19	di	5.013978871	1.241414409	4.038924337	0.000422352
20	phat	-0.374459162	0.089564321	-4.180896549	0.000291281

The results for supply equation are:

16		Coefficients	Standard Error	t Stat	P-value
17	lntercept	20.03280279	2.165698376	9.250042857	$7.35757 \mathrm{E}-10$
18	phat	0.337981554	0.04412361	7.659879835	$3.07433 \mathrm{E}-08$
19	pf	-1.000909364	0.146127429	-6.849565273	$2.33394 \mathrm{E}-07$

Since the model standard error is based on the LS residuals, the standard errors, t-statistics and confidence intervals are incorrect. Since Excel doesn't have a built in function for these errors, we will need to do some calculations. The calculation is explained in the next section.

11.3.1 Correction of 2SLS standard errors

In the simple linear regression model $y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}$ the 2SLS estimator is the least squares estimator applied to $y_{i}=\beta_{1}+\beta_{2} \hat{x}_{i}+e_{i}$ where \hat{x}_{i} is the predicted value from a reduced form equation. So, the 2SLS estimators are

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\sum\left(\hat{x}_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}
\end{aligned}
$$

In large samples the 2SLS estimators have approximate normal distributions. In the simple regression model

$$
\hat{\beta}_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}\right)
$$

The error variance σ^{2} should be estimated using the estimator

$$
\hat{\sigma}_{2 S L S}^{2}=\frac{\sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)^{2}}{N-2}
$$

with the quantity in the numerator being the sum of squared 2SLS residuals, or $\operatorname{SSE}_{\text {2SLs }}$. The problem with doing 2SLS with two least squares regressions is that in the second estimation the estimated variance is

$$
\hat{\sigma}_{\text {wrong }}^{2}=\frac{\sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} \hat{x}_{i}\right)^{2}}{N-2}
$$

The numerator is the SSE from the regression of y_{i} on \hat{x}_{i}, which is $S S E_{\text {wrong }}$.
Thus correct 2SLS standard error is

$$
\operatorname{se}\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{2 S L S}^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{\hat{\sigma}_{2 S L S}^{2}}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\hat{\sigma}_{2 S L S}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}
$$

and the "wrong" standard error, calculated in the $2^{\text {nd }}$ least squares estimation, is

$$
\operatorname{se} \text { wrong }\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{\text {wrong }}^{2}}{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\sqrt{\hat{\sigma}_{\text {wrong }}^{2}}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}=\frac{\hat{\sigma}_{\text {wrong }}}{\sqrt{\sum\left(\hat{x}_{i}-\bar{x}\right)^{2}}}
$$

Given that we have the "wrong" standard error in the $2^{\text {nd }}$ regression, we can adjust it using a correction factor

$$
\operatorname{se}\left(\hat{\beta}_{2}\right)=\sqrt{\frac{\hat{\sigma}_{2 S L S}^{2}}{\hat{\sigma}_{\text {wrong }}^{2}}} \operatorname{se} e_{\text {wrong }}\left(\hat{\beta}_{2}\right)=\frac{\hat{\sigma}_{\text {2SLS }}}{\hat{\sigma}_{\text {wrong }}} s e_{\text {wrong }}\left(\hat{\beta}_{2}\right)
$$

11.3.2 Corrected standard errors in truffle demand and supply

The first step to correcting the standard errors is to calculate the sigmahats of the 2SLS for both the supply and demand equations. As in the previous chapter, go back to the original data and create two columns.

- Label them residualdemand and residualsupply, respectively.
- Calculate the residuals for both columns using the 2SLS estimates.

| | A | B | C | D | E | F | G | H |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | ---: |
| 1 | \mathbf{p} | \mathbf{q} | $\mathbf{p s}$ | $\mathbf{d i}$ | $\boldsymbol{p h a t}$ | $\mathbf{p f}$ | residualdemand= $\mathrm{y}-b l-b 2 p s-b 3 d i-b 4 p$ | residualsupply= $\mathrm{y}-b l-b 2 p-b 3 p f$ |
| 2 | 29.64 | 19.89 | 19.97 | 2.103 | 31.83041 | 10.52 | -1.157741013 | -20.69014321 |
| 3 | 40.23 | 13.04 | 18.04 | 2.043 | 40.46577 | 19.67 | -1.240036587 | -40.27768788 |
| 4 | 34.71 | 19.61 | 22.36 | 1.87 | 38.50108 | 13.74 | -1.468496308 | -25.90663584 |
| 5 | 41.43 | 17.13 | 20.87 | 1.525 | 39.03302 | 17.95 | 2.228780053 | -34.87170364 |

- Label column I as shown below to calculate the correction factors for both the demand and the supply functions.
- In cells J1 and J5, we calculate the correct sigmahat_2sls for the demand and supply functions, respectively.
- In cells J2 and J6, we copy and paste the sighat_wrong from the demand and supply outputs and
- calculate the correction factors in cells J3 and J7 for demand and supply, respectively.

G	H	I	J
residualdemand $=\mathrm{y}-b /-b 2 p s-b 3 d i-b 4 p$	residualsupply $=\mathrm{y}-b 1-b 2 p-b 3 p f$	SighatD_2sls	=SQRT(SUMSQ(G2:G31)/26)
-1.157741013	-20.69014321	SighatD_wrong	2.68008449800055
-1.240036587	-40.27768788	Correction factor Demand	$=+\mathrm{J} 1 / \mathrm{J} 2$
-1.468496308	-25.90663584		
2.228780053	-34.87170364	SighatS_2sls	=SQRT(SUMSQ(H2:H31)/27)
7.582987119	-29.24334634	SighatS_wrong	2.65168723436824
-8.116766311	-51.65454187	Correction factor Supply	$=+.55 / \mathrm{J} 6$
4.890932986	-47.5673206		
-3.472370467	-47.15280603		

The resulting sighat_2sls figures and the correction factor for demand are

I	J
SighatD_2sls	4.929960233
SighatD_wrong	2.680084498
Correction factor Demand	1.839479403

Now, we can plug in the correction factor of 1.839479403 into the demand model coefficient page and calculate the corrected standard errors, t-test, and the p-values. From the results, we have a demand function is downward sloping, and shifts to the right as the price of substitutes rises, and shifts to the right as income rises (truffles are a normal good). All of our coefficients are significant at the 5% level.

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-4.279473279	3.013833748	-1.41994338	0.167504529
18	ps	1.296033361	0.193094429	6.711914817	$4.02707 \mathrm{E}-07$
19	di	5.013978871	1.241414409	4.038924337	0.000422352
20	phat	-0.374459162	0.089564321	-4.180896549	0.000291281
21					
22		Coefficients Corrected Standard Errol Corrected t Stat Corrected P-value			
23	Intercept	-4.279473279	5.543885104	-0.771926762	0.447117761
24	ps	1.296033361	0.355193225	3.648812161	0.001160083
25	di	5.013978871	2.283556237	2.195688807	0.037235204
26	phat	-0.374459162	0.164751724	-2.272869455	0.03153503
27					
28	Correction factor Demand	1.839479403			

11.4 SUPPLY AND DEMAND OF FISH

The second example is from the Fulton Fish market. The demand equation is:

$$
\ln \left(Q U A N_{t}\right)=\alpha_{1}+\alpha_{2} \ln \left(\text { PRICE }_{t}\right)+\alpha_{3} M O N_{t}+\alpha_{4} T U E_{t}+\alpha_{5} W E D_{t}+\alpha_{6} T H U_{t}+e_{t}^{d}
$$

Where $\ln \left(Q U A N_{t}\right)$ the quantity is sold in pounds, and PRICE_{t} is the average price per pound. The remaining are the dummy variables for the days of the week which capture the demand shifts. α_{2} is the price elasticity of demand, which is should be negative. The supply equation is:

$$
\ln \left(\text { QUAN }_{t}\right)=\beta_{1}+\beta_{2} \ln \left(\text { PRICE }_{t}\right)+\beta_{3} S T O R M Y_{t}+e_{t}^{s}
$$

β_{2} is the price elasticity of supply. The variable STORMY is a dummy variable indicating stormy weather during the previous three days. Below are the partial summary statistics on the data set fultonfish.xls.

	A	B	C	D	E	F	G	H
1		Iprice	Iquan	mon	tue	wed	thu	stormy
2								
3	Mean	-0.19368	8.52343	0.189189	0.207207	0.189189	0.207207	0.288288
4	Standard Deviation	0.381935	0.741672	0.393435	0.407143	0.393435	0.407143	0.45502
5	Minimum	-1.10775	6.194406	0	0	0	0	0
6	Maximum	0.664327	9.981374	1	1	1	1	1
7	Count	111	111	111	111	111	111	111

11.5 REDUCED FORMS FOR FISH PRICE AND QUANTITY

The reduced form equations are estimated using the LSE. We can get them by estimating the price and quantity equations as a function of all the exogenous variables. In this case,

$$
\begin{aligned}
& Q_{t}=\pi_{11}+\pi_{21} \text { MON }_{t}+\pi_{31} \text { TUE }_{t}+\pi_{41} \text { WED }{ }_{t}+\pi_{51} \text { THU }_{t}+\pi_{61} \text { STORMY }_{t}+v_{t 1} \\
& P_{t}=\pi_{12}+\pi_{22} \text { MON }_{t}+\pi_{32} \text { TUE }_{t}+\pi_{42} \text { WED } D_{t}+\pi_{52} \text { THU }_{t}+\pi_{62} \text { STORMY }_{t}+v_{t 2}
\end{aligned}
$$

The output for the reduced form equations are:
For the quantity:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	8.810062929	0.147024398	59.92245519	$5.06767 \mathrm{E}-83$
18	mon	0.101005158	0.206502523	0.489123117	0.625774713
19	tue	-0.484706164	0.201145868	-2.409724684	0.017704406
20	wed	-0.553113922	0.205806011	-2.687549888	0.008371018
21	thu	0.053693174	0.201048771	0.267065417	0.789942623
22	stormy	-0.387772227	0.143730552	-2.697910927	0.008131513

For the price:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-0.271705457	0.076388974	-3.55686747	0.000564633
18	mon	-0.11292248	0.107291824	-1.052479825	0.294995532
19	tue	-0.04114933	0.104508685	-0.393740767	0.694570871
20	wed	-0.011824968	0.10692994	-0.110586129	0.912155647
21	thu	0.049645652	0.104458236	0.475267953	0.635583179
22	stormy	0.346405584	0.074677601	4.638681183	$1.01527 \mathrm{E}-05$

Now, using the predicted price, phat, we can estimate the structural equations. The output for the structural equations is:

Supply equation:

16		Coefficients				Standard Error	t Stat	P-value
17	Intercept	8.62835419	0.388927755	22.18497927				
$18.0627 \mathrm{E}-42$								
18	Predicted Iprice	0.001058583	1.309403799	0.000808446				
19	stormy	-0.9699356445						

Demand equation:

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	8.505911279	0.160846266	52.88224267	$1.66981 \mathrm{E}-77$
18	mon	-0.025402162	0.20789713	-0.122186211	0.902985096
19	tue	-0.530769415	0.201339958	-2.636185187	0.009655531
20	wed	-0.56635099	0.205942487	-2.750044429	0.007018196
21	thu	0.109267351	0.202101276	0.54065641	0.589899505
22	Predicted Iprice	-1.11941679	0.414919848	-2.697910927	0.008131513

Recall that, although the point estimates are correct, the standard errors are NOT. You need to adjust the standard errors the way illustrated in Section 11.3.2 above. The discussion in the text explains why the estimated supply equation is not credible.

ChAPTER 12

Nonstationary Time-Series Data and Cointegration

CHAPTER OUTLINE

12.1 Stationary and Nonstationary Data
12.2 Spurious Regression
12.3 Unit Root Tests for Stationarity
12.4 Integration and Cointegration
12.5 Engle-Granger Test

12.1 STATIONARY AND NONSTATIONARY DATA

One of the fundamental principles of econometrics is that the statistical properties of estimators depend on how the data behaves. When time series data is concerned, the data need to be stationary for the usual econometric procedures to have desired statistical properties. Time series data is stationary when the means, variances, and covariances are constant and don't depend on the period in which they are measured.

To illustrate stationarity, we will use usa.xls and look at the mean and variance of GDP in different sub period using time series plots and summary statistics. Open your file usa.xIs. Insert a column to the left of GDP and name it t for time.

- Type 1 in cell A2.
- Type =A2+1 in cell A3 and copy the cell down the entire column.
- After creating a time counter, highlight the t and GDP columns and go to Insert>Chart>Scatter Plot. After some formatting, your time series plot will look like:

As many other macroeconomic variables, GDP is a non-stationary time series. It has an increasing trend that changes the mean every period. The consequences of non-stationarity can be quite severe, resulting in unreliable least squares estimates and test statistics.

We can also create summary statistics to compare the means in different periods. Below are the summary statistics for the first half, second half and overall data.

	A	B	C	D
1	gdp	GDP(entire period)	GDP(1st half of the data)	GDP (Second half of the data)
2				
3	Mean	7584.24689	5587.70249	9587.939966
4	Standard Error	2312.617998	4119.5	922.9504271
5	Minimum	12198.79981	4119.5	1382.247457
6	Maximum	81	7232.200195	7337.700195
7	Count	40	12198.79981	

Both plot and the descriptive statistics indicate the GDP data is non-stationary.

12.2 SPURIOUS REGRESSION

It is very possible to estimate a regression and find statistically significant relationship where no such relationship exists. In time series analysis this is a common phenomenon when data is nonstationary. Our example will use two time series, $r w 1$ and $r w 2$ that are generated by random walks where

$$
\begin{aligned}
& r w_{1}: y_{t+1}+v_{1 t} \\
& r w_{2}: x_{t+1}+v_{2 t}
\end{aligned}
$$

The errors are independent standard normal generated by a pseudo random generator. By construction, $r w_{1}$ and $r w_{2}$ are not related in any way. Now let's look at the empirical relationship by opening the file spurious.xls.

Insert a column at Column A and create the time counter as described in the previous section. Then plot both of the series against the t variable.

Time Series Plot

time
Next, scatter plot $r w 1$ against $r w 2$ and observe the potential spurious relationship between the two variables.

You can also estimate a linear regression that will confirm the suspicion. The coefficient on $r w 2$ is positive and significant. However, these variables are not related in any way. The cause of the spurious relationship is the nonstationarity of the two series.

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.83960906			
5	R Square	0.704943374			
6	Adjusted R Square	0.704520657			
7	Standard Error	8.557267989			
8	Observations	700			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	1	122116.5568	122116.5568	1667.647606
13	Residual	698	51112.33113	73.22683543	
14	Total	699	173228.8879		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	17.81804111	0.620477603	28.71665477	$2.4603 \mathrm{E}-120$
18	nw2	0.84204116	0.020619645	40.83684128	$3.5686 \mathrm{E}-187$

Therefore, it is very important to check for stationarity first, whenever you are dealing with time series data.

12.3 UNIT ROOT TEST FOR STATIONARITY

The Dickey Fuller (DF) and augmented Dickey-Fuller (ADF) are unit root tests that are used to test stationarity. Before conducting the test, there are certain decisions that need to be made about the nature of the data in order to implement the correct regression model. These choices can be made by visual inspection of the data various plots. For example, if the data has nonzero mean, a constant term in the regression is appropriate. Below are the different possible regression models for series with different characteristics:

$$
\begin{aligned}
& \Delta y_{t}=\gamma y_{t-1}+v_{t} \quad \text { No constant and no trend } \\
& \Delta y_{t}=\alpha+\gamma y_{t-1}+v_{t} \text { Constant but no trend } \\
& \Delta y_{t}=\alpha+\gamma y_{t-1}+\lambda t+v_{t} \text { Constant and trend }
\end{aligned}
$$

Recall the GDP plot, which is slightly quadratic in time, so you would choose the regression model that included a constant and a trend to conduct the unit root test. The test is conducted by estimating the regression and implementing a t-test for the following hypothesis:

$$
\begin{aligned}
& H_{0}: \gamma=0 \\
& H_{1}: \gamma<0
\end{aligned}
$$

The augmented version of the DF test (ADF) adds lagged differences to the model and the models become:

$$
\begin{gathered}
\Delta y_{t}=\gamma y_{t-1}+\sum_{s=1}^{m} a_{s} \Delta y_{t-s}+v_{t} \\
\Delta y_{t}=\alpha+\gamma y_{t-1}+\sum_{s=1}^{m} a_{s} \Delta y_{t-s}+v_{t} \\
\Delta y_{t}=\alpha+\gamma y_{t-1}+\lambda t+\sum_{s=1}^{m} a_{s} \Delta y_{t-s}+v_{t}
\end{gathered}
$$

You have to pick a lag length to implement this test. The lag length should be enough to ensure that the residuals are not autocorrelated.

Let's consider Federal Funds rate $\left(\mathrm{F}_{\mathrm{t}}\right)$ and the 3-year Bond rate $\left(\mathrm{B}_{\mathrm{t}}\right)$ for this test. The plots indicated both series are nonstationary.

Federal Funds (F) vs 3-year Bond (B) Rates

Since the series fluctuated from a non-zero mean and didn't seem to have trend, we will use the model with a constant but no trend. We will use one lag for the ADF test. So we will be estimating the following regression model for both the F_{t} and the B_{t}.

$$
\Delta y_{t}=\alpha+\gamma y_{t-1}+a_{1} \Delta y_{t-1}+v_{t}
$$

Open the file usa.xls and estimate two regressions.

- Create 3 columns to the right of column F.
- Label them diffF, lagF and difflagF for differenced F, lagged F and differenced lagged F, respectively.

	A	B	C	D	E	F	G	H	I	J	K
1	t	$g d p$	inf	F	diffF	$\operatorname{lag} F$	difflagF	B	diffB	$\operatorname{lag} B$	difflagB
2	1	4119.5	3.548619	8.47667				10.6767			
3	2	4178.4	3.645685	7.92333	= D3-D2	= D2		9.76333	=E3-E2	= E 2	
4	3	4261.3	3.309139	7.9	-0.02333	7.92333	=F4-F3	9.28667	-0.47666	9.76333	=G4-G3
5	4	4321.8	3.469453	8.10333	0.20333	7.9	-0.02333	8.84333	-0.44334	9.28667	-0.47666
6	5	4385.6	3.06095	7.82667	-0.27666	8.10333	0.20333	7.93667	-0.90666	8.84333	-0.44334
7	6	4425.7	1.626267	6.92	-0.90667	7.82667	-0.27666	7.18	-0.75667	7.93667	-0.90666

- In cell E3, type =D3-D2.
- Copy this formula down the column.
- In cell F3, type =D2, and Copy the formula down the column.
- In cell G4, type =F4-F3, and Copy the formula down the column.
- Repeat the same for series F. The formulas have been highlighted in the above sheet.

Next, estimate two regressions; one for B and the other for F. Use the diffF as the $\underline{\mathbf{Y}}$-Range, and lagF and difflagF as the $\underline{\mathbf{X}}$-Range. Notice that the first observations appear in Row 3. Place results on a worksheet named ADF-f .

Repeat for the B series and store the output in ADF-b.

The results for the B series are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.371685373			
5	R Square	0.138150016			
6	Adjusted R Square	0.115469754			
7	Standard Error	0.49540856			
8	Observations	79			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	2	2.989922068	1.494961034	6.091200007
13	Residual	76	18.65265275	0.245429642	
14	Total	78	21.64257482		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.285224314	0.178082305	1.601643207	0.113383195
18	$\operatorname{lag} \mathrm{B}$	-0.056219537	0.028444983	-1.976430699	0.051734625
19	difflagB	0.31506378	0.105991584	2.972535827	0.00395437

The results for the F series are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.675282422			
5	R Square	0.456006349			
6	Adjusted R Square	0.441690727			
7	Standard Error	0.354361732			
8	Observations	79			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	2	7.9998949	3.99994745	31.85375643
13	Residual	76	9.543490008	0.125572237	
14	Total	78	17.54338491		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.177861681	0.100751146	1.765356406	0.081520684
18	lagF	-0.037066841	0.01773275	-2.09030419	0.039934653
19	difflagF	0.672477694	0.08536637	7.877548199	$1.88803 \mathrm{E}-11$

The t-statistics in this case is also called the tau-statistics within the context of unit root testing. These values are compared to the ADF critical values. For both of the series, when compared the test statistics to the critical values for the Dickey-Fuller test (which are shown in Table 12.2 of

POE), we do not reject our null hypothesis, and conclude that the levels of the series are nonstationary.

12.4 INTEGRATION AND COINTEGRATION

Two non-stationary series are said to be cointegrated if their differences are stationary. For example, Fed Funds rate and the 3 -year bond are non-stationary. Both series are "integrated of order 1 " or I(1). If the two series move together through time, they are said to be cointegrated. We can test cointegration by running a regression of one of the $\mathrm{I}(1)$ series on the other and testing the residuals for stationarity using the augmented Dickey-Fuller test where the null hypothesis is that the residuals are non-stationary. Rejecting the hypothesis leads to the conclusion that the residuals are stationary and therefore, the series are cointegrated.

12.5 ENGLE-GRANGER TEST

The test described above is commonly referred as the Engle-Granger test. We will illustrate the test by regressing B on F, save the residuals then use these in an augmented Dickey-Fuller regression on the residuals.

Return to usa.xls file. Estimate the regression B as the $\underline{\mathbf{Y}}$-Range, and F as the $\underline{\mathbf{X}}$-Range. Include labels and choose the Residuals option. Place the results on a cointegration worksheet.

Copy the residuals from the output section to the data section and paste it in the next available column. Create differ, lage and difflage and write the relevant formulas as shown below.

J	K	L	M	N	O
lagB	difflagB	Residuals	diffe	lage	difflage
10.6767		1.976095			
9.76333	-0.91337	1.523383	$=\mathrm{L} 3-\mathrm{L} 2$	$=\mathrm{L} 2$	
9.2866146	-0.47666	0.453532	-0.45724	1.523383	$=\mathrm{N} 4-\mathrm{N} 3$
8.84333	-0.44334	-0.22281	-0.67634	1.066146	-0.45724
7.93667	-0.90666	-0.22467	-0.00186	-0.22282	-0.61261
7.18	-0.75667	-0.15415	0.070521	-0.22467	-0.001864

Estimate a regression, using diffe as the $\underline{\mathbf{Y}}$-Range and lage and difflage as the $\underline{\mathbf{X}}$-Range.

The output is:

	A	B	c	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.491775216			
5	R Square	0.241842863			
6	Adjusted R Square	0.221891359			
7	Standard Error	0.401454738			
8	Observations	79			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	2	3.907156588	1.953578294	12.1215357
13	Residual	76	12.24860893	0.161165907	
14	Total	78	16.15576551		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	-0.019239664	0.045260927	-0.425083293	0.671977115
18	lage	-0.314927566	0.069576341	-4.526359986	2.182E-05
19	difflage	0.312402954	0.10285232	3.037393364	0.003269178

Compare the results to the $1 \%, 5 \%, 10 \%$ ADF critical values. If the values are less than the t value, reject the null hypothesis and conclude that the residuals are stationary. You can find the critical values for this test in Table 12.3 of POE.

CHAPTER 13

An Introduction to Macroeconometrics: VEC and VAR Models

CHAPTER OUTLINE
13.1 VEC and VAR models
13.2 Estimating VECM
13.3 Estimating VAR

13.1 VEC AND VAR MODELS

The vector autoregressive (VAR) model is a general framework used to describe dynamic interrelationship among stationary variables. So first step of any VAR analysis should be to determine whether the levels of your data is stationary or not. If not, take the first difference and try again. Usually, if the levels of the time series are not stationary, the differences will be. If the time series is stationary, then we need to modify the VAR framework to allow consistent estimation of the relationship among series. The vector error correction (VEC) model is a special case of the VAR for variables that are $I(1)$. The VEC can also take into account any cointegrating relationship among the series.

13.2 ESTIMATING A VEC MODEL

We will use gdp.xls data on Gross Domestic Product of U.S. and Australia to estimate a VEC model. We are using a VEC model because (1) both series are nonstationary in levels and stationary in differences (2) the variables are integrated. The following is the time series plot for the two series. Go to Insert>Chart> select line graph and highlight both columns of data.

After some formatting your plot should look like

Neither of these series is stationary in its levels and they appear to have a common trend. Next, we will take the difference of both series. To accomplish that, label cells D1 and E1, diffusa and diffaus, for differenced U.S. GDP and differenced Australian GDP, respectively.

	A	B	C	D
1	usa	aus	diffusa	diffaus
2	38.3011	38.2355		
3	38.3734	38.7551	$=+\mathrm{B} 3-\mathrm{B} 2$	$=+\mathrm{C} 3-\mathrm{C} 2$
4	38.7137	38.7706	0.340297	0.015499
5	38.2991	38.8948	-0.4146	0.124199
6	39.3615	39.5621	1.062401	0.667301

- In cell C3, type $=\mathbf{B} 3-\mathbf{B} 2$ to difference the series usa and Copy this formula down the column.
- Repeat it for aus; in cell D3, type =C3-C2, and Copy the formula down the column.
- Highlight both C and D columns and go to Insert>Chart> select line graph.
- After some formatting the plot for the differenced data will look like

The differences of both series seem to be stationary, and possible they may be cointegrated.
Based on the graphical information, we will estimate Dickey-Fuller regressions for levels with intercept, time trend and 2 lags for US equation and 3 lags for Australian equation. Recall that the model with intercept and trend is

$$
\Delta y_{t}=\alpha+\gamma y_{t-1}+\lambda t+\sum_{s=1}^{m} a_{s} \Delta y_{t-s}+v_{t}
$$

Before we estimate the model, we need get the data ready. Return to gdp.xls.

- Insert 5 columns after usa and label those new columns diffusa, lag usa, diffl1usa, diffl2usa, and trend.
- In cell B3, type =A3-A2 and Copy this formula down the column (You already have this column from the previous section).
- In cell C3, type =A2 to get the lagged values of usa, and Copy the formula down the column.
- In cell D4, type =C3 to get the lagged values of the differenced data for usa, and Copy the formula down the column.
- In cell E5, type $=\mathbf{C} 3$ to get the double lagged values of the differenced data for $u s a$, and Copy the formula down the column.
- In cell F1, type 1, in cell F2 type 2. Highlight the two cells and drag it down to create a time trend.
- Repeat the same process for series aus except add another lag for the difference since we are using 3 lags for aus.. The formulas have been highlighted in the below sheet.

	A	B	C	D	E	F	G	H	1	J	K	L	M
1	usa	diffusa	lag usa	diffl1usa	diffl2usa	trend	aus	diffaus	lag aus	diffl1aus	diffl2aus	diffl3aus	trend
2	38.301102					1	38.2355						1
3	38.373402	0.0723	38.301102			2	38.7551	0.5196	38.2355				2
4	38.713699	0.340297	38.373402	0.0723		3	38.770599	0.015499	38.7551	0.5196			3
5	38.299099	-0.4146	38.713699	0.340297	0.0723	4	38.894798	0.124199	38.770599	0.015499	0.5196		4
6	39.3615	1.062401	38.299099	-0.4146	0.340297	5	39.562099	0.667301	38.894798	0.124199	0.015499	0.5196	5
7	39.583599	0.222099	39.3615	1.062401	-0.4146	6	39.640202	0.078103	39.562099	0.667301	0.124199	0.015499	6
8	39.897301	0.313702	39.583599	0.222099	1.062401	7	40.861401	1.221199	39.640202	0.078103	0.667301	0.124199	7
9	40.011398	0.114097	39.897301	0.313702	0.222099	8	40.674099	-0.187302	40.861401	1.221199	0.078103	0.667301	8
10	40.722401	0.711003	40.011398	0.114097	0.313702	9	40.264198	-0.409901	40.674099	-0.187302	1.221199	0.078103	9
11	41.683998	0.961597	40.722401	0.711003	0.114097	10	41.1712	0.9070023	3 40.264198	-0.409901	-0.187302	1.221199	10

Next, estimate two regressions; one for usa and the other for aus. Use the diffusa as the $\underline{\mathbf{Y}}$-Range, and lag usa, diffllusa, diffl2usa, and trend as the $\underline{\mathbf{X}}$-Range. Notice that the first 4 rows will not be used due to missing values. Place results on a worksheet named ADF for USA

Repeat for the aus series and store the output in ADF for AUS

The ADF results for USA are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.421979542			
5	R Square	0.178066734			
6	Adjusted R Square	0.149724208			
7	Standard Error	0.477910919			
8	Observations	121			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	4	5.739818131	1.434954533	6.282669784
13	Residual	116	26.49426622	0.228398847	
14	Total	120	32.23408435		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.606481834	0.54685214	1.109041712	0.26970618
18	lag usa	-0.01426451	0.016603754	-0.859113561	0.39204974
19	diffl1usa	0.202463125	0.092160702	2.196848768	0.030019379
20	diffl2usa	0.204936241	0.095625644	2.143109646	0.034193279
21	trend	0.00950405	0.007947703	1.195823466	0.234204198

and for Australia:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.323637007			
5	R Square	0.104740912			
6	Adjusted R Square	0.065475163			
7	Standard Error	0.6334085			
8	Observations	120			
9					
10	ANOVA	そ			
11		df	SS	MS	F
12	Regression	5	5.351065163	1.070213033	2.667487923
13	Residual	114	45.73752131	0.401206327	
14	Total	119	51.08858647		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.724289943	0.595013684	1.217266027	0.226016839
18	lag aus	-0.018175522	0.018602333	-0.977056081	0.330610216
19	diffl1aus	0.063265454	0.097241016	0.650604623	0.516610867
20	diffl2aus	0.014950618	0.098350356	0.152013869	0.8794447
21	diffl3aus	0.1919537	0.098280123	1.953128397	0.053255
22	trend	0.012244468	0.008839102	1.385261502	0.168677111

In each case, the null hypothesis of nonstationarity can not be rejected at any significance. Notice that both lagged differences are significant in the US equation and the $3^{\text {rd }}$ lag in the Australian equation are significant. Next, we will estimate the cointegration equation. Notice that the cointegration equation does not include a constant. Return to gdp.xls file. Estimate the regression aus as the $\underline{\mathbf{Y}}$-Range, and usa as the $\underline{\mathbf{X}}$-Range. Include labels and choose the $\underline{\text { Residuals option. }}$ Place the results on $\mathbf{L S}$ for cointegration worksheet.

The output is:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.999826204			
5	R Square	0.999652439			
6	Adjusted R Square	0.991522358			
7	Standard Error	1.219374742			
8	Observations	124			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	526014.2115	526014.2115	353771.6996
13	Residual	123	182.8855956	1.486874761	
14	Total	124	526197.0971		
15					
16		Coefficients	Standard Error\｛	t Stat	P－value
17	Intercept	0	剘／A	剘／A	荆／A
18	usa	0.985349542	0.001656642	594.7871045	$1.3477 \mathrm{E}-214$

We saved the residual to for the Engle－Granger test of cointegration as described in Section 12.5 of this manual．Copy the residuals from the output section to the data section and paste it in the next available column and rename the column e ．Create diffe，lag e and difflle and write the relevant formulas as shown below．

N	O	P	Q
\mathbf{e}	diffe	lag \mathbf{e}	difflie
0.495527			
0.9436	$=\mathrm{N} 3-\mathrm{N} 2$	$=+\mathrm{N} 2$	
0.624073	-0.31981	0.943886	$=03$
1.156798	0.532725	0.624073	-0.31981
0.777263	-0.37954	1.156798	0.532725
0.636521	-0.14074	0.777263	-0.37954

We will estimate the relationship $\Delta \hat{e}_{t}=\phi \hat{e}_{t-1}+v_{t}$ ．

which produces the following result：

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.253071206			
5	R Square	0.064045035			
6	Adjusted R Square	0.055848314			
7	Standard Error	0.598499617			
8	Observations	123			
9					
10	ANOVA				
11		$d f$	SS	MS	F
12	Regression	1	2.990323011	2.990323011	8.34815202
13	Residual	122	43.70061859	0.358201792	
14	Total	123	46.6909416		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0	\#\#\#	刺/A	\#\#
18	$\operatorname{lag} e$	-0.127936484	0.044279146	-2.889316878	0.004570296

The t-ratio is -2.89 . The 5% critical value for the model with no intercept is -2.76 . The t-ratio falls within the rejection region and the null hypothesis of no cointegration is rejected and we conclude that the two real GDP series are cointegrated.

To get the VEC model results for Australia, we will estimate the following regression.

The results are:

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.18556239			
5	R Square	0.0344334			
6	Adjusted R Square	0.026453511			
7	Standard Error	0.640878604			
8	Observations	123			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	1.772289218	1.772289218	4.315022349
13	Residual	121	49.69777165	0.410725386	
14	Total	122	51.47006087		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.491705874	0.057909469	8.490940752	$6.12439 \mathrm{E}-14$
18	lage	-0.098702699	0.047515741	-2.077263187	0.039892949

The significant negative coefficient on lag e indicates that the Australian GDP responds to disequilibrium between the US and Australia.

If we estimate the VEC model for USA,

We obtain:

	A	B	c	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.071619325			
5	R Square	0.005129328			
6	Adjusted R Square	-0.003092744			
7	Standard Error	0.516568014			
8	Observations	123			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	0.166469321	0.166469321	0.623848573
13	Residual	121	32.2879441	0.266842513	
14	Total	122	32.45441342		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.509884284	0.046676827	10.92371351	$9.50767 \mathrm{E}-20$
18	$\operatorname{lag} \mathrm{e}$	0.030250241	0.038299159	0.789840853	0.431165838

The US, does not appear to respond to the disequilibrium between the two economies. These finding support the idea that the economic conditions in Australia depend on those in the US but not vice verse. In this simple model of two economy trade, the US acts as a large closed economy and Australia as a small open economy.

13.3 ESTIMATING A VAR

The VEC model incorporates cointegration equation. It is relevant when two variables are $\mathrm{I}(1)$ and integrated. Vector autoregressive model (VAR) is used when there is no cointegration among variables and is estimated using time series that have been transformed to their stationary values. To illustrate VAR model, we will use growth.xls. As earlier, the first step is to determine whether the variables are stationary. If they are not, we will difference them and make sure the difference is stationary. Next, we will test for cointegration, if they are cointegrated, we will estimate the VEC model. If the series are not cointegrated, then using the differences and the lagged differences, we will estimate a VAR model.

Let's first plot the series and the differenced series. Plotting will help us determine the existence of intercept and/or trend components.

The fitted least squares regression results of G_{t} on P_{t} are：

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.977255712			
5	R Square	0.955028727			
6	Adjusted R Square	0.954776079			
7	Standard Error	0.08828569			
8	Observations	13			
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	29.4633339	29.4633339	3780.082302
13	Residual	178	1.387396627	0.007794363	
14	Total	179	30.85073053		
15					
16		Coefficients	Standard Error	t Stat	P－value
17	Intercept	1.631500506	0.039323334	41.48937383	$1.94269 \mathrm{E}-93$
18	P	0.623453779	0.010140366	61.48237391	$7.8928 \mathrm{E}-122$

Observe the very large R^{2} ，and t－ratio．However，based on the plots，the series appear to be nonstationary．To test for cointegration，we estimate the Dickey－Fuller regression．The following are the results from that regression：

ANOVA				
	$d f$	SS	MS	F
Regression	1	0.000111625	0.000111625	0.954408746
Residual	178	0.020818365	0.000116957	
Total	179	0.02092999		
	Coefficients	Standard Error	t Stat	P－value
Intercept	0	剘／A	剘／A	刺／A
lage	－0．009036793	0.009250115	－0．976938456	0.329925471

Since the tau（unit root t－value）of -0.977 is greater than the 5% critical value of the test for stationarity of -3.37 ，we conclude the residuals are nonstationary．Hence the relationship between G and P is spurious．Therefore instead of a VEC model，we need to apply a VAR model to these series．

For illustrative purposed, the order of lag in this example will be restricted to 1 . In general, one should test for the significance of lag terms greater than 1 . The models we will be running are:

$$
\begin{aligned}
& \Delta P_{t}=\beta_{10}+\beta_{11} \Delta P_{t-1}+\beta_{12} \Delta G_{t-1} \\
& \Delta G_{t}=\beta_{20}+\beta_{21} \Delta P_{t-1}+\beta_{22} \Delta G_{t-1}
\end{aligned}
$$

We need to modify the growth.xls worksheet to include the above variables as shown below:

	A	B	C	D	E	F	G	H	I
1	G	P	e	lag e	diffe	diffG	diffP	diffl1G	diffl1P
2	3.244286	2.836813	-0.15584						
3	3.23927	2.842983	-0.1647	-0.15584	-0.00886	$=\mathrm{A} 3-\mathrm{A} 2$	$=\mathrm{B} 3-\mathrm{B} 2$		
4	3.240825	2.845566	-0.16475	-0.1647	$-5.5 \mathrm{E}-05$	0.001555	0.002583	$=\mathrm{F} 3$	$=\mathrm{G3}$
5	3.227784	2.851042	-0.18121	-0.16475	-0.01646	-0.01304	0.005476	0.001555	0.002583
6	3.233824	2.851683	-0.17557	-0.18121	0.00564	0.00604	0.000641	-0.01304	0.005476
7	3.252434	2.852006	-0.15716	-0.17557	0.018409	0.01861	0.0003323	0.00604	0.000641
8	3.2685	2.857125	-0.14429	-0.15716	0.012875	0.016066	0.005119	0.01861	0.000323
9	3.288727	2.858399	-0.12485	-0.14429	0.019433	0.020227	0.001274	0.016066	0.005119
10	3.306542	2.860313	-0.10823	-0.12485	0.016622	0.017815	0.001914	0.020227	0.001274
11	3.317417	2.864758	-0.10013	-0.10823	0.008104	0.010875	0.004445	0.017815	0.001914

The least square results for CPI equation are:

ANOVA				
	$d f$	SS	MS	F
Regression	2	0.006972498	0.003486249	175.4642224
Residual	175	0.003477025	$1.98687 \mathrm{E}-05$	
Total	177	0.010449523		
	Coefficients	Standard Error	t Stat	P-value
Intercept	0.001432711	0.000710429	2.016685391	0.045257125
diff1G	0.046446771	0.03985809	1.165303502	0.245482057
diff1P	0.826820668	0.044706493	18.4944203	$5.01742 \mathrm{E}-43$

The results indicate that the growth in price $\left(\Delta P_{t}\right)$ is significantly related to its own past value $\left(\Delta P_{t-1}\right)$ but insignificantly related to growth rate in GDP in the previous period $\left(\Delta G_{t-1}\right)$.

The least square results for G are:

ANOVA				
	$d f$	SS	MS	F
Regression	2	0.002188739	0.001094369	17.76577384
Residual	175	0.010779979	$6.15999 \mathrm{E}-05$	
Total	177	0.012968718		
	Coefficients	Standard Error	t Stat	P-value
Intercept	0.009814317	0.001250908	7.845753633	$4.09303 \mathrm{E}-13$
diff16	0.228509949	0.070181314	3.255994191	0.001356833
difflた	-0.326946958	0.078718283	-4.153380182	$5.11284 \mathrm{E}-05$

These results indicate that ΔG_{t} is significantly and positively related to its own past value and significantly and negatively related to last period's inflation $\left(\Delta P_{t-1}\right)$.

CHAPTER 14

An Introduction to Financial Econometrics: Time-Varying Volatility and ARCH Models

CHAPTER OUTLINE

14.1 ARCH Model and Time Varying Volatility
14.2 Testing, Estimating, and Forecasting

14.1 ARCH MODEL AND TIME VARYING VOLATILITY

In this chapter, we will estimate several models in which the variance of the dependent variable changes over time. These types of models are broadly referred to as autoregressive conditional heteroskedasticity (ARCH) models. These models have become popular because the variance specification can capture commonly observed features of the time series of financial variables. They are especially useful in modeling volatility and changes in volatility over time. To understand volatility and time-varying volatility, we will look at the returns.xls which shows the time series of the monthly returns to four different stock market indices.

Open returns.xls and plot each series using Insert>Chart and choosing Line plot. After some editing, the plots look like this:

The series are characterized by random, rapid changes and are said to be volatile. The volatility seems to change over time for all 4 series. Next, to generate histograms of the series, go to Tools>Data Analysis>Histogram. After some editing the histograms look like:

Based on the histograms, we can say the series are leptokurtic. In other words, they have a lot of observations around the average and a relatively large number of observations that are far from average.

14.2 TESTING, ESTIMATING, AND FORECASTING

The basic ARCH model has two equations; one equation to describe the behavior of the mean, and another to describe the behavior of the variance.

The mean equation is a linear regression function that contains a constant and possibly some explanatory variables. The example below contains only an intercept.

$$
y_{t}=\beta_{0}+e_{t} \text { where } e_{t} \sim N\left(0, \sigma_{t}^{2}\right)
$$

In this case, the series is expected to vary random about its mean. The error of the regression is normally distributed and heteroskedastic. The variance of the current period depends on the information revealed in the proceeding period.

$$
h_{t}=\alpha+\alpha_{1} e_{t-1}^{2}
$$

where the variance of e_{t} is given by h_{t}. Notice that h_{t} depends on the squared error in the preceding period. The parameters in this equation have to be positive to ensure a positive variance.

To test for the presence of the ARCH effects, we can use a Lagrange Multiplier ($L M$) test. To conduct this test, we first estimate the mean equation, store least squares residuals from the mean equation, square them and run an auxiliary regression to observe the impact of previous error term for a $1^{\text {st }}$ order ARCH process. In other words, testing for ARCH(1), requires to regress \hat{e}_{t}^{2} on the lagged residual \hat{e}_{t-1}^{2}.

$$
\hat{e}_{t}^{2}=\gamma_{0}+\gamma_{1} \hat{e}_{t-1}^{2}+v_{t}
$$

where v_{t} is the random error of the auxiliary relationship. The null and alternative hypotheses to be tested are:

$$
\begin{aligned}
& H_{0}: \gamma_{1}=0 \\
& H_{1}: \gamma_{1} \neq 0
\end{aligned}
$$

The $L M$ test statistic is $N R^{2}$ with a $\chi_{(1)}$ distribution under null hypothesis, where N is the number of observations in the auxiliary regression. The general version of the $L M$ test is to conduct an $\operatorname{ARCH}(q)$ test and include q lags of \hat{e}_{t}^{2} as regressor. This version will have $\chi_{(q)}$ distribution if the null hypothesis is true and N in this case will be $T-q$.

We will use byd.xls data to as the first ARCH example. Open the Excel file named byd.xls and go to Insert>Chart and plot the line plot for visual inspection of the time series.

As can be seen from the plot, there is visual evidence of volatility in the series. We will propose and test and ARCH(1) model against the null hypothesis of no ARCH using the LM test discussed earlier. First, estimate the mean equation. Recall that the mean equation we are running does not have any explanatory variables. Excel will not estimate the model without defining the $\underline{\mathbf{X}}$-Range so we will have to trick Excel. In cell B1, type intercept and create a column of ones. Next, estimate the regression using the r as the $\underline{\mathbf{Y}}$-Range, and intercept as the $\underline{\mathbf{X}}$-Range. Make sure to suppress the intercept, include the labels and keep the residuals.

In order to test the $\operatorname{ARCH}(1)$ model, we now need to estimate the auxiliary regression. Copy the residuals from the output section to the data section and paste it in the next available column. Rename it e, and create e square, and lag e square and write the relevant formulas as shown below.

	A	B	c	D	E
1	I	intercept	e	e square	lag e square
2	0		-1.07829	=C2n2	
3	-0.22719	1	-1.30549	1.704297	=+D2
4	1.350843	1	0.272549	0.074283	1.704296882
5	1.105559	1	0.027265	0.000743	0.074282837
6	0.065499	1	-1.0128	1.025754	0.000743368
7	1.681189	1	0.602895	0.363482	1.025754158
8	1.051365	1	-0.02693	0.000725	0.363482116
9	0.481928		-0.59637	0.355653	0.000725183

Now, to test for first-order ARCH, regress \hat{e}_{t}^{2} on \hat{e}_{t-1}^{2} by estimating the regression using the e square as the $\underline{\mathbf{Y}}$-Range, and lag e square as the $\underline{\mathbf{X}}$-Range.

	A	B	C	D	E
1	SUMMARY OUTPUT				
2					
3	Regression Statistics				
4	Multiple R	0.352942118			
5	R Square	0.124568139			
6	Adjusted R Square	0.122806707		$\quad=(500-1)$	0.12457
7	Standard Error	2.450017971	$\square=62.16$		
8	Observations	499	\bigcirc		
9					
10	ANOVA				
11		df	SS	MS	F
12	Regression	1	424.501819	424.501819	70.71979869
13	Residual	497	2983.286264	6.002588057	
14	Total	498	3407.788083		
15					
16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	0.908261837	0.124401233	7.301067805	1.14072E-12
18	lag e square	0.35307145	0.0419848	8.409506448	$4.3871 \mathrm{E}-16$

Given the $L M=62.16$, we reject the null hypothesis, there is evidence of presence of $\operatorname{ARCH}(1)$ process.

Unfortunately, ARCH models and all its extensions are estimated using by the maximum likelihood method and beyond the capabilities of Excel.

CHAPTER 15

Panel Data Models

CHAPTER OUTLINE

15.1 Sets of Regression Equations
15.2 Seemingly Unrelated Regressions
15.2.1 Breusch-Pagan test of independence
15.3 The Fixed Effects Model
15.3.1 A dummy variable model
15.4 Random Effects Estimation

15.1 SETS OF REGRESSION EQUATIONS

Times series data are observations on the same unit taken over time. For example, annual GDP over a ten-year period would be time-series data. Cross-sectional data are observations at one point in time, over different units, such as 1990 per capita income for each of the 50 U.S. states. In this section we will examine investment data from two firms (cross section) and for 20 periods (time series). Open grunfeld2.xls. The descriptive statistics for the two firms can be obtained by choosing Tools>Data Analysis>Descriptive Statistics. Below are some of the descriptive statistics after some editing:

	inv_ge	v_ge	k_ge	inv_we	v_we	k_we
Mean	102.29	1941.325	400.16	42.8915	670.91	85.64
Standard Deviatio	48.58449937	413.8432895	250.6188475	19.1101886	222.3919274	62.26493818
Minimum	33.1	1170.6	97.8	12.93	191.5	0.8
Maximum	189.6	2803.3	888.9	90.08	1193.5	213.5
Count	20	20	20	20	20	20

The equations we consider first are the individual investment models.

$$
\begin{array}{ll}
I N V_{G E, t}=\beta_{1}+\beta_{2} V_{G E, t}+\beta_{3} K_{G E, t}+e_{G E, t} & t=1, \ldots, 20 \\
I N V_{W E, t}=\beta_{1}+\beta_{2} V_{W E, t}+\beta_{3} K_{W E, t}+e_{W E, t} & t=1, \ldots, 20
\end{array}
$$

If the models have the same parameters, we can estimate a pooled regression model using all 40 observations. However, if the parameters are not identical the models will be:

$$
\begin{array}{ll}
I N V_{G E, t}=\beta_{1, G E}+\beta_{2, G E} V_{G E, t}+\beta_{3, G E} K_{G E, t}+e_{G E, t} & t=1, \ldots, 20 \\
I N V_{W E, t}=\beta_{1, W E}+\beta_{2, W E} V_{W E, t}+\beta_{3, W E} K_{W E, t}+e_{W E, t} & t=1, \ldots, 20
\end{array}
$$

We will first estimate two separate regressions using Tools>Data Analysis>Regression. Check the Residuals option for later use. Click OK.

Estimate another regression for WE using D1 through D21 as the $\underline{\mathbf{Y}}$-Range and E1 through F21 as the $\underline{\mathbf{X}}$-Range, include labels and check the Residuals option for later use. Click OK.

The least squares results for $G E$ are:

	$d f$	SS	MS	F
Regression	2	31632.03023	15816.01511	20.34354567
Residual	17	13216.58777	777.4463394	
Total		19	44848.618	
	Coefficients		Standard Error	t Stat
Intercept	-9.956306455	31.37424914	-0.317340071	P-value
v_ge	0.026551189	0.015566104	1.705705484	0.1062659398
k ge	0.15169387	0.025704083	5.901547565	$1.74209 \mathrm{E}-05$

The least squares results for $W E$ are:

	$d f$	SS	MS	F
Regression	2	5165.552925	2582.776462	24.76108713
Residual	17	1773.23393	104.3078783	
Total		19	6938.786855	
	Coefficients	Standard Error	t Stat	P-value
	-0.509390184	8.015288941	-0.063552317	0.950067995
Intercept	0.052894126	0.015706501	3.367658052	0.003654762
vwe	0.092406492	0.056098974	1.647204673	0.117874323
kwe				

To test whether we should pool the data or not, create the below dummy variable model:

$$
I N V_{i, t}=\beta_{1, G E}+\delta_{1} D_{i}+\beta_{2, G E} V_{i, t}+\delta_{2} D_{i}+\beta_{3, G E} K_{i, t}+\delta_{3} D_{i}+e_{i, t}
$$

where $D=1$ for Westinghouse observations and 0 otherwise.
To estimate the dummy variable model in Excel, create three new columns and name them D, $D V$ and $D K$ respectively. Column D will take the value 1 for $W E$ and 0 for $G E$, Column $D V$ will take the respective v values for Westinghouse and 0 for General Electric, and Column $D K$ will take the respective k values for Westinghouse and 0 for General Electric. The worksheet will look like:

	A	B	C	D	E	F
1	inv ge	v ge	k_ge	d	dv	dk
2	33.1	1170.6	97.8	0	0	0
3	45	2015.8	104.4	0	0	0
4	77.2	2803.3	118	0	0	0
5	44.6	2039.7	156.2	GE 0	0	0
6	48.1	2256.2	172.6	- 0	0	0
7	74.4	2132.2	186.6	0	0	0
8	113	1834.1	220.9	0	0	0
9	91.9	1588	287.8	\bigcirc	0	0
10	61.3	1749.4	319.9	0	0	0
11	56.8	1687.2	321.3	0	0	0
12	93.6	2007.7	319.6	0	0	0
13	159.9	2208.3	346	0	0	0
14	147.2	1656.7	456.4	0	0	0
15	146.3	1604.4	543.4	0	0	0
16	98.3	1431.8	618.3	0	0	0
17	93.5	1610.5	647.4	0	0	0
18	135.2	1819.4	671.3	0	0	0
19	157.3	2079.7	726.1	0	WE 0	0
20	179.5	2371.6	800.3	0	10	0
21	189.6	2759.9	888.9	0	0	0
22	12.93	191.5	1.8		191.5	1.8
23	25.9	516	0.8		516	0.8
24	35.05	729	7.4	1	729	7.4
25	22.89	560.4	18.1	- 1	560.4	18.1
26	18.84	519.9	23.5	1	519.9	23.5
27	28.57	628.5	26.5	1	628.5	26.5
28	(48.51	537.1	36.2	1	537.1	36.2

Estimate a regression, using A1 through A41 for the $\underline{\mathbf{Y}}$-Range, and cells B1 through F41 as the $\underline{\mathbf{X}}$-Range. Place the results on a worksheet named OLS with dummies.

The results are

	$d f$	$S S$	SS	F
Regression	5	72079.40118	14415.88024	32.69818266
Residual	34	14989.8217	440.8771088	
Total		39	87069.22288	
	Coefficients	Standard Error	t Stat	P-value
	-9.956306455	23.62636475	-0.421406618	0.676110524
Intercept	0.026551189	0.011722048	2.265064025	0.02999627
v_ge	0.15169387	0.019356449	7.836864688	$4.01579 \mathrm{E}-09$
k_ge	9.446916271	28.80535074	0.327956995	0.744955281
d	0.026342937	0.034352676	0.766837983	0.448470065
v_we	-0.055567378	0.116946431	-0.506961843	0.61545399
k_we				

From these results, if we plug in 1 for D, we obtain two estimated regressions, one for $G E$ and one for Westinghouse. Since $D=1$ for $W E$ and $D=0$ for $G E$, the respective equations are:

$$
\begin{array}{ll}
\text { GE }(D=0): & I N V_{i, t}=-9.9563+0.02655 V_{t}+0.15169 K_{i, t} \\
\text { Westinghouse }(D=0): & I N V_{i, t}=-0.5094+0.0529 V_{t}+0.0924 K_{t}
\end{array}
$$

The parameter estimates here are exactly as those from the separate regression equations above, but the standard errors are different. This new model treats the coefficients in the same way as before, but now assumes constant variance across all the observations.

To test for the significant differences in the variances, we use the Goldfeld-Quandt test, where -

$$
G Q=S S E _G E / S S E _W E
$$

We can get the SSEs for the separate regressions from the output and calculate GQ as:

$$
G Q=13216.5871 / 1773.23405=7.45338
$$

The $F(17,17, .95)$ critical value is 2.2718 with a p-value of 0.3284 . We reject the null hypothesis of equal variance and find that there is strong evidence that the error variance for the two equations are different.

15.2 SEEMINGLY UNRELATED REGRESSIONS

We will now assume that the error terms in the two equations, at the same point in time, are correlated. This is called contemporaneous correlation.. Adding this assumption of contemporaneous correlation provides additional information to our model and it should be incorporated. Seemingly unrelated regression (SUR) permits equation coefficients and variances to differ and also allows for contemporaneous correlation between the errors,

$$
\operatorname{cov}\left(e_{G E, t}, e_{W E, t}\right)=\sigma_{G E, W E}
$$

While most statistical packages perform SUR estimation automatically, Excel does not. The basic procedures used in SUR are (1) estimate the two equations separately via least squares, (2) use the residuals in step (1) to obtain estimates of the variances and covariances in order to transform the data, and (3) estimate the equations jointly via generalized least squares. Unfortunately, the transformation necessary to perform the generalized least squares is beyond the scope of text.

15.2.1 Breusch-Pagan test of independence

In order to determine when to pool the data and use SUR or when to estimate the equations separately, we need to test for the independence of errors. If the errors are not correlated, separate estimation is fine. The test for correlation between the errors is called the Breusch-Pagan test. If the null hypothesis of zero correlation is not rejected, again, separate estimation is fine.

$$
B P=T r_{G E, W E}^{2}
$$

where $r_{G E, W E}^{2}=\sigma_{G E, W E}^{2} / \sigma_{G E}^{2} \sigma_{W E}^{2}$ and $\sigma_{G E, W E}=\frac{1}{T}=\sum_{i=1}^{20} \hat{e}_{G E, t} \hat{e}_{W E, t}$.
The test statistic is distributed as $\chi_{(1)}^{2}$ under the null hypothesis of no contemporaneous correlation. To calculate the estimated correlation between the equations, we will use the residuals from the separate OLS results.

- Return to the worksheet $G E$ and highlight cells C25 to C45.
- Choose Edit>Copy or click the Copy icon.
- Go to the WE worksheet and Paste in cells D25 through D45.
- In cell E26, type =C26*D26 and copy this formula down to cell E45.

25	Observation	Predictedi we	Residuals	Residuals	$\mathrm{e}^{*} \mathrm{e}$
26	1	9.786166672	3.143833328	-2.860176107	-8.99191697
27	2	26.85790414	-0.957904138	-14.40242074	13.79613842
28	3	38.73423587	-3.684235868	-5.174518855	19.06414797
29	4	30.80503565	-7.915035651	-23.29473664	184.378671
30	5	29.1618186	-10.3218186	-28.03084857	289.329334
31	6	35.18334018	-6.613340178	-0.562215299	3.718121027
32	7	31.24516001	17.26483999	40.74959444	703.5352276
33	8	34.79310815	8.546891845	16.03552218	137.0538737
34	9	39.93597243	-2.915972431	-23.71921299	69.16457116
35	10	41.06683077	-3.256830775	-26.78010044	87.21825527
36	11	47.02251951	-7.752519512	1.768123007	-13.7074081
37	12	47.6635511	5.796448895	58.73723628	340.4673884
38	13	40.50961605	15.05038395	43.93586896	661.2516972
39	14	46.59067745	2.969322552	31.22712944	92.72341968
40	15	43.47344125	-11.43344125	-23.5520062	269.2804791
41	16	45.72092623	-13.48092623	-37.51099533	505.6829607
42	17	49.76050037	4.619499633	-4.983022245	-23.0190694
43	18	58.64156885	1343843115	1.892879122	24.86946203
44	19	78.77240423	11.3075957	5.086901827	57.52062956
45	20	82.10522249	-13.50522249	+863001836	115.645245
46					3528.981227
47					176.4490614

- In cell E46, type =SUM(E26:E45).
- In cell E47, type $=E 46 / 20$. The result is 176.4490614 and represents $\sigma_{G E, W E}$.

Next, we need a degrees of freedom adjustment for the calculation. Excel calculates the estimated model variance by dividing by $T-K$. Because the Breusch-Pagan test is only asymptotically justified, we divide only by T. Since the estimated model variance is the $S S E$ divided by $T-K$, we can simply recalculate using information from the ANOVA tables of our separate regressions.

- In cell D9 of the $G E$ worksheet, type $=\mathbf{C 1 3 / 2 0}$. The result is 660.8293885 .
- In cell D9 of the WE worksheet, type $=\mathbf{C 1 3 / 2 0}$. The result is 88.66169652 .
- In a blank cell, say E7 of WE, type $=(176.4490614 \wedge 2) /(660.8293885 * 88.66169652)$. The result is 0.531389929 .
- In cell F7, type =E7*20 and
- in cell G7, type $=$ CHIDIST(F7,1).

Based on the $B P$ test, we reject the null hypothesis and find evidence of contemporaneous correlation between the error terms. SUR is the appropriate analysis.

15.3 THE FIXED EFFECTS MODEL

The fixed effects model is a model for pooling data where the intercept is allowed to change across firms but not across time and slope coefficients are assumed to be the same across firms.

Since all behavioral differences between firms and over time will be captured by the intercept, this model is called a fixed effects model.

15.3.1 A Dummy Variable Specification

The fixed effects model permits cross-section heterogeneity by allowing only the intercept to vary across individuals using dummy variables. We will also extend our model to include data on all ten firms in grunfeld.xls. This data set has the investment data for ten companies for 20 periods each. Below is an edited portion of the descriptive statistics of the dataset.

	A	B	C	D	E	F
1		i	t	inv	v	k
3	Mean	5.5	10.5	145.9067502	1081.681102	276.5171506
4	Standard Deviation	2.879489067	5.780751286	216.8855026	1314.469701	300.9475476
5	Minimum	1	1	0.93	58.119999	0.8
6	Maximum	10	20	1486.699951	6241.700195	2226.300049
7	Count	200	200	200	200	200

We will need nine dummy variables for ten forms, one firm will be the base firm and captured by the intercept term. And the coefficient for each firm will be the difference between the intercept for its firm and the intercept for the "base" firm (the "variable of omission"). Recall that if we include all ten dummy variables, we will have perfect multicollinearity and estimation would not be possible.

- First, we will create the dummy variables. Open the file named grunfeld.xls.
- Label cells F1 through N1, D1 through D9.
- In cells F2 through F21, type "1" and type " $\mathbf{0}$ " in the remaining cells of the column.
- In cells G22 through G41, type "1" and type "0" in all other cells of the column.
- Continue in this fashion, typing "1" appropriately for each firm, and "0" otherwise using the Copy and Paste functions.

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
1	i	t	inv	v	k	D1	D2	D3	D4	D5	D6	D7	D8	D9
2	1	1	317.6	3078.5	2.8	1	0	0	0	0	0	0	0	0
3	1	2	391.8	4661.7	52.6	1	0	0	0	0	0	0	0	0
4	1	3	410.6	5387.1	156.9	1	0	0	0	0	0	0	0	0
5	1	4	257.7	2792.2	209.2	1	0	0	0	0	0	0	0	0
6	1	5	330.8	4313.2	203.4	1	0	0	0	0	0	0	0	0
7	1	6	461.2	4643.9	207.2	1	0	0	0	0	0	0	0	0
8	1	7	512	4551.2	255.2	1	0	0	0	0	0	0	0	0

- Estimate a regression, using column C as the $\underline{\mathbf{Y}}$-Range, and columns D through N as the \underline{X}-Range.
- Include labels and place results on a worksheet named Unrestricted.

212 Chapter 15

The results are

	df	SS	MS	F
Regression	11	8837969.789	803451.799	288.8925207
Residual	188	522855.1361	2781.144341	
Total		199	9360824.926	
	Coefficients	Standard Error	t Stat	P-value
Intercept	-6.546268194	11.81986618	-0.553836067	0.580349165
k	0.109771099	0.011854899	9.259555738	$4.70566 \mathrm{E}-17$
L1	0.310644119	0.01737039	17.88354297	$1.98326 \mathrm{E}-42$
D1	-62.59718141	50.30696922	-1.244304365	0.214936634
D2	107.408677	26.92852115	3.988658581	$9.50954 \mathrm{E}-05$
D3	-228.5724613	26.49588482	-8.62671554	$2.61477 \mathrm{E}-15$
D4	-21.08870132	18.0386602	-1.169083573	0.243850136
D5	-108.770633	18.42532863	-5.903321197	$1.63464 \mathrm{E}-08$
D6	-16.52729642	17.11168235	-0.965848716	0.33536068
D7	-60.13665761	17.43587875	-3.449017882	0.000694446
D8	-50.81232281	17.97745009	-2.826447719	0.005215892
D9	-80.7307421	17.36690092	-4.648540491	$6.28015 \mathrm{E}-06$

To obtain the results in Table 17.2, remember that we did not include a dummy variable for the tenth firm, so its intercept is -6.546 . And for all the other firms, the intercept is the difference between the coefficient of the firm dummy and the intercept. For example, for Firm 1, the intercept is the difference $-6.546-62.60=-69.146$. Based on the p-values for the dummy coefficients, it appears that Firms 1, 4, and 6 do not have intercepts that differ significantly from -6.546.

To test the equality of the intercepts, the null and alternative hypotheses are:

$$
\begin{aligned}
& H_{0}: \beta_{1, D 1}=\beta_{1, D 2}=\beta_{1, D 3}=\beta_{1, D 4}=\beta_{1, D 5}=\beta_{1, D 6}=\beta_{1, D 7}=\beta_{1, D 8}=\beta_{1, D 9} \\
& H_{1}: \beta_{1, i} \text { are not all equal }
\end{aligned}
$$

This is a regular F-test where we can use the template we previously created. The model we estimated above is the unrestricted model, so now we just need to run the restricted model, where we force all nine intercept coefficients to be equal. We can run the restricted model by returning
to the worksheet containing the data and running a regression, including only V and K as the $\underline{\mathbf{X}}$ Range. Place the results on a worksheet named Restricted.

The results are:

11		$d f$	$S S$	MS	F
12	Regression	2	7611697.286	3805848.643	428.6434938
13	Residual	197	1749127.64	8878.820507	
14	Total	199	9360824.926		
15					
16					
17	Intercept	-43.02447743	9.497895769	-4.529895724	$1.02136 \mathrm{E}-05$
18	v	0.115374318	0.005830177	19.78916102	$1.04325 \mathrm{E}-48$
19 k	0.231931394	0.025464874	9.107894735	$9.5536 \mathrm{E}-17$	

- Open the F-template created earlier.
- Copy the SSE from cell C13 of the Unrestricted model and
- Paste it to cell B7 of the template.
- From the Restricted model, Copy the SSE in cell C13 and
- Paste it to cell B6 of template.
- We are testing for 9 restrictions and sample size is 200 , so set the $J=9, T=200$, and $K=$ 12.

Hypothes is Testing - F-Test	
Data Input	
	J
T	
K	200
SSE-RESTRICTED	1749127.683
SSE-UNRESTRICTED	522855.1655
ALPHA	0.05
Computed Values	
df-numerator	9
df-denominator	188
F	48.99152204
Right Critical Value	1.92995686
Decision	Reject Ho
p-value	$1.11131 E-44$

We reject the null hypothesis and find evidence that at least one firm has an intercept different from the rest.

15.4 RANDOM EFFECTS ESTIMATION

We only make inferences about the firms on which we have data. The error components model assumes the intercepts are random variables, drawn from a population distribution of firm intercepts. One result of this is that the error terms from the same firm in different time periods are correlated. The error components model, therefore, is sometimes called a random effects model.

We know that generalized least squares estimation is appropriate when we have correlated error terms. While it is possible to carry out the calculations with Excel, you are best advised to use an econometric software package with a specialized routine for estimation of the random effects model.

сhapter 16

Qualitative and Limited Dependent Variable Models

CHAPTER OUTLINE

16.1 Models with Binary Dependent Variables
16.1.1 The linear probablility model
16.1.2 Least squares estimation of the linear
probablility model

16.1 MODELS WITH BINARY DEPENDENT VARIABLES

So far, our focus has been on models in which the dependent variables is continuous; prices, revenues, quantities etc. However, as a general theory of choice, microeconomics deals with many choices where the outcomes are qualitative. In this chapter, we will consider choices that are of the "either-or" type. That is, we choose to buy a particular car or not, we choose one job over another, we vote either for or against a particular issue. In trying to explain these types of choices, the dependent variable is dichotomous, or binary, since we quantify the choices by assigning values zero or one. We then construct a statistical model that explains why particular choices are made and what factors influence those choices.

To illustrate a model with a dichotomous dependent variable, consider a problem from transportation economics. Workers can either drive to work (private transportation) or take a bus (public transportation). For simplicity, we will assume these are the only two alternatives. The individual's choice will be represented by a dummy variable y, where

$$
y=\left\{\begin{array}{l}
1 \text { if the individual drives to work } \\
0 \text { if the individual takes a bus to work }
\end{array}\right.
$$

If we collect random sample of workers who commute to work, then the outcome y will be unknown to us until the sample is drawn. Thus, y is a random variable. If the probability that an individual drives to work is p, then $P[y=1]=p$. It follows that the probability that a person uses public transportation is $P[y=0]=1-p$. The probability function for this random variable is

$$
f(y)=p^{y}(1-p)^{1-y}, y=0,1
$$

where p is the probability that y takes the value 1 . This discrete random variable has expected value $E[y]=p$ and variance $\operatorname{var}(y)=p(1-p)$.

If we assume that the only factor that determines the probability that an individual chooses one mode of transportation over the other is the difference in time to get to work between the two modes, then we define the explanatory variable x as

$$
x=\text { (commuting time by bus }- \text { commuting time by car) }
$$

While there are other factors that affect this choice, we will focus on this single explanatory variable. A priori we expect a positive relationship between x and p that is as x increases, the individual will be more inclined to drive.

16.1.1 The linear probability model

In regression analysis, the dependent variable is broken into two parts; fixed (systematic) and random (stochastic). If we apply this to random variable y, we have

$$
y=E(y)+e=p+e
$$

We then relate the systematic portion of y to the explanatory variables that we believe will help explain the expected value. We are assuming that the probability of driving is positively related to the difference in driving times, x, in this example. If we assume a linear relationship, then we will have the following linear probability model.

$$
E(y)=p=\beta_{1}+\beta_{2} x
$$

In this chapter, we will examine the problems with least squares estimation in the context of binary choice models. However, for these models least squares estimation methods are not the best choice. Instead, maximum likelihood estimation (see Appendix C. 8 of your book) is the method to use. Excel does not have the capabilities to perform maximum likelihood estimation. Other statistical packages such as EViews or SAS should be used when dealing with binary choice models.

16.2 Least squares estimation of the linear probability model

The linear regression model for explaining the choice variable y is called the linear probability model and is given by

$$
y=E(y)+e=\beta_{1}+\beta_{2} x+e
$$

To see how to apply the linear probability model in Excel, open the file transport.xls. Estimate the regression, using auto as the $\underline{\mathbf{Y}}$-Range and dtime as the $\underline{\mathbf{X}}$-Range. Include labels and check the \underline{R} esiduals option. label the worksheet "linear probability model" and click OK.

The least squares results are

ANOVA				
	$d f$		$S S$	$M S$
Regression		1	3.202181455	3.202181455

The explanatory variable is significant, suggesting that an increase of one minute in the difference between the time it takes to get to work by bus versus by car increases the probability of driving to work. However, the linear probability model has a very serious problem. Let's look at the fitted model, using least squares estimation:

$$
E(y)=\hat{p}=0.4848+0.007 \text { dtime }
$$

For certain values of dtime, the estimated probability might turn out less than zero or greater than one which is NOT possible for any valid probability function. If we look at the residual output we can observe multiple occurrences of this problem.

RESIDUAL OUTPUT		
Obsenvation	Predicted auto	Residuals
1	0.143791971	-0.143791971
2	0.656351265	-0.656351265
	1.066961201	-0.066961201
4	0.311832673	-0.311832673
5	0.262615731	-0.262615731
6	1.124615311	-0.124615311
7	0.851109721	0.148890279
	-0.131822882	0.131822882
-	0.365268209	-0.365268209
10	0.122698996	-0.122698996
	-0.152915857	0.152915857
12	0.945325023	0.054674977

The problem arises because, the linear probability model is an increases function in x and the increase is constant. However, given the requirement for a valid probability function of $0 \leq p \leq 1$, a constant rate of increase is not possible. Unfortunately, more appropriate models such as the Logit and Probit model can not be estimated using the standard version of Excel.

CHAPTER 17

Importing Internet Data

Up to now, we have taken you through various econometric methodologies and applications using already prepared Excel workfiles. In this chapter, we show you how to import data into an Excel spreadsheet.

Getting data for economic research is much easier today than it was years ago. Before the Internet, hours would be spent in libraries, looking for and copying data by hand. Now we have access to rich data sources which are a few clicks away.

Suppose you are interested in analyzing the GDP of the United States. As suggested in POE Chapter 17, the website Resources for Economists contains a wide variety of data, and in particular the macro data we seek.

Websites are continually updated and improved. We shall guide you through an example, but be prepared for differences from what we show here.

First, open up the website: www.rfe.org :

Select the Data option and then select U.S. Macro and Regional Data.

This will open up a range of sub-data categories. For the example discussed here, select the National Income and Produce Accounts to get data on GDP.

From the screen below, select the Gross Domestic Product (GDP) option.

U.S. Economic Accounts

Most websites allow you to download data convenietly in an Excel format.

National Economic Accounts

Gross Domestic Product (GDP)

- News Release: Gross Domestic Product
${ }^{\mathbf{*}}$ includes highlights, technical note, and associated tables
- Now Available: NIPA annual and comprehensive revision plans
- Current-dollar and "real" GDP (Excel $=35 \mathrm{~KB}$)
- Percent change from preceding period (Excel $1 / \mathbf{N B}$)

Mill Interactive Tables: National Income and Product Aceounts Tables

- Selected NIPA Tables:
- Text format (Text $=1,788 \mathrm{~KB}$)
- Self-extracting format (EXE $=870 \mathrm{~KB}$)
- Compressed format (ZIP $=802 \mathrm{~KB}$)
- Comma-delimited format (CSV $=1,071 \mathrm{~KB}$)
- Portable document format (PDF $=6,189 \mathrm{~KB}$)

Be sure to save the file which is called gdplev.xls.

Once the file has been downloaded (in this example, to C : $\operatorname{lgdplev.xls}$), we can open the file and a sample of the data in Excel format is shown below.

APPENDIX B

Review of Probability Concepts

CHAPTER OUTLINE

B. 1 Binomial Probabilities
B.1.1 Computing binomial probabilies directly
B.1.2 Computing binomial probabilities using

BINOMDIST
B. 2 The Normal Distribution

Excel has a number of functions for computing probabilities. In this chapter we will show you how to work with the probability function of a binomial random variable, how to compute probabilities involving normal random variables.

B. 1 BINOMIAL PROBABILITIES

A binomial experiment consists of a fixed number of trials, n. On each independent trial the outcome is success or failure, with the probability of success, p, being the same for each trial. The random variable X is the number of successes in n trials, so $x=0,1, \ldots, n$. For this discrete random variable, the probability that $X=x$ is given by the probability function

$$
P(X=x)=f(x)=\left(\frac{n!}{x!(n-x)!}\right) p^{x}(1-p)^{n-x}, \quad x=0,1, \ldots, n
$$

We can compute these probabilities two ways: the hard way and the easy way.

B.1.1 Computing binomial probabilities directly

Excel has a number of mathematical functions that make computation of formulas straightforward. Assume there are $n=5$ trials, that the probability of success is $p=0.3$, and that we want the probability of $x=3$ successes. What we must compute is

$$
P(X=3)=f(3)=\left(\frac{5!}{3!(5-3)!}\right) \cdot 3^{3}(1-.3)^{5-3}
$$

Eventually you will learn many shortcuts in Excel, but should you forget how to compute some mathematical or statistical quantity, there is a Paste Function (\boldsymbol{f}_{*}) button on the Excel toolbar,

Click on the Paste Function button, select Math \& Trig in the first column, and scroll down the list of functions in the right-hand column. When you reach Fact you see that this function returns the factorial of a number.

Click OK. In the resulting dialog box, enter 5 and Excel determines that $5!=120$.

Alternatively, click on Help. In the resulting dialog box, enter factorial and click Search

Click on FACT.

What would you like to do?

- FACT

You are presented with an Excel function, FACT(number), a definition and some examples.
The other mathematical operations we need to compute the binomial probability are multiplication (*), division (/) and power (^).

In cell A1 type "f(3)", and in B1 type the formula
$=($ FACT(5)/(FACT(3)*FACT(2)))*(0.3^3)*(0.7^2)
It will look like

	B1	\checkmark	$=$ =(FACT $(5) /\left(\mathrm{FACT}(3)^{*} \mathrm{FACT}(2)\right)^{*}\left(0.3^{\wedge} 3\right)^{*}(0$.	
A			B	
	f(3)			

Note that we have used parentheses to group operations.
Hit <enter>, and the result is 0.1323 .

B.1.2 Computing binomial probabilities using BINOMDIST

The Excel function BINOMDIST can be used to find either cumulative probability, $P(X \leq x)$ or the probability function, $P(X=x)$ for a Binomial random variable. Syntax for the function is

BINOMDIST(number_s, trials, probability_s, cumulative)

where number_s is the number of successes in n trials
trials is the number of independent trials (n)
probability is p, the probability of success on any one trial
cumulative is a logical value. If set equal to 1 (true), the cumulative probability is returned; if set to 0 (false), the probability mass function is returned.

Access this function by clicking the Paste Function button. Select Statistical in the Function category and BINOMDIST in the Function name.

Using the values $n=5, p=.3$, and $x=3$ we obtain the probability 0.1323 , as above.

Alternatively, we can type the function equation directly into a cell. For example, if $p=.2$ and n $=10$, to find the probability that $X=4$ and $X \leq 4$, the worksheet would appears as follows:

The formulas in the first column produce the results reported in the second column.

B. 2 THE NORMAL DISTRIBUTION

Excel provides several functions related to the Normal and Standard Normal Distributions.

1. The STANDARDIZE function computes the Z value for given values of X, μ, and σ. The format of this function is

STANDARDIZE(X, $\mu, \sigma)$

Referring to the example in POE Section B.5.1 in which $\mu=3$ and $\sigma=3$, if we wanted to find the Z value corresponding to $X=6$, we would enter $=$ STANDARDIZE($6,3,3$) in a cell, and the value computed would be 1.0.
2. The NORMSDIST function computes the area, or cumulative probability, less than a given Z value. Geometrically, the cumulative probability is

The format of this function is

NORMSDIST(Z)

If we wanted to find the area below a Z value of 1.0 , we would enter $=$ NORMSDIST(1.0) in a cell, and the value computed would be .8413 .
3. The NORMSINV function computes the Z value corresponding to a given cumulative area under the normal curve. The format of this function is
where $\boldsymbol{p r o b}$ is the area under the standard normal curve less than z . That is, $\operatorname{prob}=P(\mathrm{Z}<\mathrm{z})$. If we wanted to find the z value corresponding to a cumulative area of .10 , we would enter =NORMSINV(.10) in a cell and the value computed would be -1.2815 .
4. The NORMDIST function computes the area or probability less than a given X value. The format of this function is

NORMDIST(X, μ, σ, TRUE)

TRUE is a logical value, which can be replaced by 1 . If we wanted to find the area below an X value of 6 , we would enter $=$ NORMDIST(6,3,3,1) in a cell, and the value computed would be .8413.
5. The NORMINV function computes the x value corresponding to a cumulative area under the normal curve. The format of this function is

NORMINV(prob, μ, σ)

where prob is the area under the normal curve less than x. That is, $\operatorname{prob}=\mathrm{P}(X<x)$. To compute the value of x such that .10 of the probability is to the left, enter $=\operatorname{NORMINV}(.10,3,3)$ in a cell, yielding -0.8446 .

For the example in Section 2.6, a template can be built in Excel to compute probabilities and values of X corresponding to particular probabilities. The highlighted cells require user input. The formulas in the other cells do the computations. Set up a spreadsheet that looks like the following

	A	B
1	Normal Probabilities	
2	mean	
3	standard_dev	
4		
5	Left-tail Probability	
6	a	
7	P(X<=a)	
8		
9	Right-tail Probability	
10	a	
11	P(X>=a)	
12		
13	Interval Probability	
14	a	
15	b	
16	P(a<=X<=b)	=NORMDIST(B15,B2,B3,1)-NORMDIST(B6,B2,B3,B10,B14,B2,B3,B3,1)
17		
18	Inverse cumulative	
19	Left-tail probability	
20	Quantile	$=$ NORMINV(B19,B2,B3)

Using $X \sim N(3,9)$, the above template would produce the following results:
Normal Probabilities

mean	3
standard_dev	3

Left-tail Probability

Right-tail Probabiity

Interval Probability
a
b
$P(a<=X<=b)$

4
6
0.210786144

Inverse cumulative

Left-tail probability	0.95
Quantile	7.934559001

Note that the Quantile $=7.93$ gives the top 5% "cut off" value.
Once again, if you forget these formulas, use the Paste Function (\boldsymbol{f}_{*}) button on the Menu Bar.

[^0]: * Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. Our use does not directly or indirectly imply Microsoft sponsorship, affiliation, or endorsement.

