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PREFACE

This book is a supplement to Principles of Econometrics, 3" Edition by R. Carter Hill, William
E. Griffiths and Guay C. Lim (Wiley, 2008), hereinafter POE. This book is not a substitute for
the textbook, nor is it a stand alone computer manual. It is a companion to the textbook, showing
how to perform the examples in the textbook using Excel 2003. This book will be useful to
students taking econometrics, as well as their instructors, and others who wish to use Excel for
econometric analysis.

In addition to this computer manual for Excel, there are similar manuals and support for the
software packages EViews, Excel, Gretl, Shazam and Stata. In addition, all the data for POE in
various formats, including Excel, are available at http://www.wiley.com/college/hill.

Individual Excel data files, errata for this manual and the textbook can be found at
http://www.bus.Isu.edu/hill/poe. Templates for routine tasks can also be found at this web site.

The chapters in this book parallel the chapters in POE. Thus, if you seek help for the examples in
Chapter 11 of the textbook, check Chapter 11 in this book. However within a Chapter the sections
numbers in POE do not necessarily correspond to the Excel manual sections.

We welcome comments on this book, and suggestions for improvement. *

Asli K. Ogunc

Department of Accounting, Economics and Finance
Texas A&M University-Commerce

Commerce, TX 75429
Asli_Ogunc@tamu-commerce.edu

R. Carter Hill

Economics Department
Louisiana State University
Baton Rouge, LA 70803
eohill@Isu.edu

“ Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. Our use does not directly or indirectly imply
Microsoft sponsorship, affiliation, or endorsement.
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CHAPTER 1

Introduction to Excel

CHAPTER OUTLINE

1.1 Starting Excel 1.4 Excel Files for Principles of Econometrics
1.2 Entering Data 1.4.1 John Wiley & Sons website
1.3 Using Excel for Calculations 1.4.2 Principles of Econometrics website
1.3.1 Arithmetic operations 1.4.3 Definition files
1.3.2 Mathematical functions 1.4.4 The food expenditure data

1.1 STARTING EXCEL

Start Excel by clicking the Start menu and locating the program, or by clicking a shortcut, such
as,

! Fle Edit WVew Insert Format Tools Data Window Help  Adobe PDF

TR S SECG A J o i S | e Hi

} S snaglt | | window - !
b &

The worksheet looks like this
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B3 Microsoft Excel - Book1 fz
3] Fle Edit MView _Insert Format Tools Data Window Help AdobePDF  Typeaguesionforheh = o @ X

_§Aria\ - 10\__13 I == 8% % » ig‘:gﬁ

_Eaﬁﬂﬁdl&zl?ﬂxmaiv SAEr Jvl%rv%lalllﬁq@m% g!
\

al h i_ \
A TI\B | D\ | | F [ 6 NH [ o+ [ J F
| cell reference\
.\‘ menu bar formatting toolbar
agtice ool standard toolbar
T formula bar

mouse pointer scroll bar /

sheet tab L]

< v
M 4 » W]} Sheetl  Sheet2 / Sheet3 / 3 . 3]
Ready

o e

There are lots of little bits that you will become more familiar with as we go along. The active
cell is surrounded by a border and is in Column A and Row 1. We will refer to cells as Al, Bl
and so on.

Across the top of the window is a Menu bar. Sliding the mouse over the items opens up a
pull down menu, showing further options.

B3 Microsoft Excel - Book1
iH] Ble Edit WView Insert | Format[\Tools Data  Window
RN = NEPET =N = cels... Ctrl+1
 Arial B B I Eow L
' Al - A Column »
A B [ Sheet 3
; AutoFormat. ..
3 Conditional Formatting. ..
4 Style...

Perhaps the most important of all these is Help.

Help | Adobe PDF Type a guestion fo

@) Microsoft Excel Help F1i

| Show the Office Assistant I

Microsoft Office Online
Contact Us

Check for Updates

Detect and Repair...

Activate Product...

Customer Feedback Options. ..

About Microsoft Office Excel
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Microsoft Office has a cute (or annoying) feature. You can have a little assistant showing on the
screen. If you click your assistant you can type in a question or search.

What would you like to do?

ype your question here and
hen click Search.

Options Search

The Standard Toolbar has the usual Microsoft functions New, Open, Save, Print, Print
preview, Copy and Paste. The AutoSum key is a feature of Excel, and the Sort buttons allow
you to order data according to the magnitude of one of your columns.

BRI W T e e ) |
r \ Save Prinrpreview\ \X /.
current Regta Sort Zoom
workbook Copy
o Print active AutoSum
REL, document
existing
workbook
New
workbook
Standard Toolbar Icons

The Formatting Toolbar has the usual functions. The use of Grid lines can clarify a worksheet,
as can the use of colored fonts and filling in cells for emphasis.
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i Arial -0 ~|B I U| §§~§|$%9fdg_ﬁg iF iE _v&vév!

A \ A

Align left,
i i center, right 4
fontsize pojq o underline g grid lines
alic
. font
- increase or color
decrease indent

Formatting Toolbar Icons

1.2 ENTERING DATA

We will use Excel to analyze data. To enter data into an Excel worksheet move the cursor to a
cell and type. First enter X in cell A1 and Y in cell B1. Navigate by moving the cursor with the
mouse, or use the Tab key to move right or left, or Arrow keys to move right, left, up or down.

A B C

1
2|
[ 3 |
| 4 |

In A2, enter the number 1. Press Enter and it will take you to the next cell, fill in the rest as
shown.

= L R —

m‘m‘b‘m|m|_.

To nicely center the data in the cells, highlight cells A1:A6. There are several ways to highlight
the cells. For small areas the easiest way is to place cursor in A1, hold down the left mouse button
and drag it across the area you wish to highlight. For larger areas, using a key-stroke combination
is very convenient.

e To highlight a column—place cursor in Al. Hold down Ctrl-key and Shift-key
simultaneously, which we will denote as Ctrl-Shift. Press the down arrow | on the

keyboard.
o To highlight a row—place cursor in Al. Press Ctrl-Shift and right arrow — on the

keyboard.
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e To highlight a region—place cursor in Al. Press Ctrl-Shift then the down arrow and
then the right arrow.

After selecting A1:A6, click Center

Microsoft Excel - Book1
iE] Ele Edit View Insert Format Tools Data  Windoy
HANE=A" REWENI= RNk A- N NN A
i Arial -0 -| B I g|§§§
Al - B X by
A B | ¢ [ b | centef]
1[X v
2 1
3 2
4 3
5 4
3 5
The result is
A B |

1 X kil

2 1

3 2

4 3

5 4

6 5

Repeat this process for B1:B6. This centering is just for appearance, and has no affect on any
functionality.

o b = T
—~ oo ow b =<

||| e ]

To highlight the entire worksheet, click the square in the upper left corner.

h A B | c
AN

2

3

4

L

? To highlight
s | worksheet
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1.3 USING EXCEL FOR CALCULATIONS

What is Excel good for? Its primary usefulness is to carry out repeated calculations. We can add,
subtract, multiply and divide; and we can apply mathematical and statistical functions to the data
in our worksheet. To illustrate, highlight Columns A & B, down to row 7, as shown below. Click
AutoSum. This will sum the rows and place the sum in the final row.

B3 Microsoft Excel - Book1

2] Fle Edit Vew Insert Format Tools Data  Window Help  Adobe PDF

RN PRI NV U TN e A R Al Ny P T

{ Arial =10 | B I g|§§§|$ % Zﬂ-’g_':@@zg;_-ﬂ
A1 el £ X / W

A | B ¢ | o | e | ¥l & | H

1] X Y | | | | |

125 1 2 /

3] 2 3 4

4] 3 6 :

[E520] 4 5

| 6 | L 7

=

| 8 |

The result its

A | B | ¢
1 x| ¥
2] 1 [z
3] 2 3
4]l 3 6
5] 4 s
6| 5 7
7l 15 23
8

Carry out a similar sequence of steps to sum the columns. Highlight rows 2:6 and columns A:C.
Click AutoSum.

-
B3 Microsoft Excel - Book1
@J FElle Edit Wew Insert Format Tools Dats  Window Help Adobe PDF

T Ty A e e e 2

; aria -0 - |B 7 U|SEEHHS % L 3
A2 - e 1 S

NEN D | E | B G |

= oy pafl-

e
(%2}
=]
%]

The column sum (X + Y) is now in column C.
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A | B | ¢ |
1 X Y
A 2 3
3| 2 3 5
4] 3 6 9
5| 4 5 g
3 5 7 12
| 7 | 15 23

To Insert Columns hold the cursor over the A in column A. The cursor turns into a down arrow
and the entire first column is highlighted.

=

E3 Microsoft Excel - Book1

iE] Ble Edit View Insert Format
HANEA" RERENN= RNk -
 Arial ~ 10 «~| B 2
T AC - B X

oy L k=M

23

On the Excel Menu select Insert/Columns. This will insert a new column to the left of the
highlighted column.

r

B3 Microsoft Excel - Book1
(] Fle Edit iew | Insert | Format T

SO 2 S | Rows

i Arial Columns

i Al - Worksheet
“ B ¥

Enter a column head, which will serve to identify what is in the first row, and enter “Sum” to
identify the contents of row 7.

A | B | €€ | D |
| 1 [Variable X Y
| 2 | 1 2 3
Ea 2 3 5
| 4 | 3 6 9
| 5 | 4 5 9
| 6 | 5 7 12

7 |Sum 15 23
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Add a header in column D.

A

Variable

|| oo

Sum

AR AR s
B*—qmmwm—{ﬂ
w

—
[Sg)

1.3.1 Arithmetic operations

Standard arithmetical functions are defined as follows (from Excel Help, type arithmetic

operators)

Arithmetic operators: To perform basic mathematical operations such as
addition, subtraction, or multiplication; combine numbers; and produce numeric
results, use the following arithmetic operators.

Arithmetic operator
+ (plus sign)

— (minus sign)

* (asterisk)

/ (forward slash)

% (percent sign)

A (caret)

Meaning (Example)

Addition (3+3)

Subtraction (3—1)Negation (1)
Multiplication (3*3)

Division (3/3)

Percent (20%)

Exponentiation (32)

To create a new variable Y2, select cell E2 and enter the formula =C272. This command instructs

Excel to square the value in cell C2.

B3 Microsoft Excel - Book1
@_] File Edit WView Insert Format Tools Data  Windov
_1 _-Lg_l_ﬂl Jil?ﬂl*ﬁéq' /l'
i o B LU l===-
SQRT > X & =Ca2
A [ B | ¢ [ b [ E |

1 | Variable X Y Sum Y2

2 1 3 [C=ca2]
3 2 3 5

4 3 6 9

5 4 5 9

6 5 7 12

7 Sum 15 23

The new value is Y2 = 4. Select this cell, and click Copy (or the shortcut Ctrl+C)
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Microsoft Excel - Book1

] Ble Edit View Insert Format Tools Data  Window
PN EER OISRV % [aE A
: A IQS— ==
: Avial -0 -|B I U] CDD’EE =
E2 - fe =C22

A | B [ ¢ | b [ E |
1 | Variable b8 Y Sum Y2
2] 1 2 3 21

The border of the cell begins to rotate. Move the cursor to the lower right corner of the cell until
the “plus” sign appears.

A | B | ¢ | p | E |
1 | Vanable X Y Sum Y2
| 2 | 1 2 3 a4 1
3 2 3 5 +
[ 4 | 3 6 9
| 5 | 4 5 g
6 | 5 7 12

7| Sum 15 23

Hold the left mouse button down and drag the plus down to cell E6.

A | B | ¢ | b | E |
1 | Variable X Y Sum Y2
| 2 | 1 2 3 4
| 3 | 2 3 5 )
4 3 6 9 36
| 5 | 4 5 9 24
6 | 5 7 12 49

Release the left button and you will find the new values of Y2. What you have done is Copy the
formula in E2 to the new cells, and Excel calculates the square of each Y value.

1.3.2 Mathematical functions

There are a large number of mathematical functions, most of which you will never use. Find the
right function is fairly simple using Help. Search for math functions.

! Excel Help v x
@|®| A '
Assistance -
Search for:
|rnaﬂ1 functions| |

Among the results returned is “Find functions and enter arguments” which is an online training
session video, which you might find useful.
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30 results from Office Online 2

1>

i@ About calculation operators

&3 Find functions and enter
arguments

Another entry is “List of worksheet functions”. A partial list of the functions available is listed on
the next page. These are taken from the Excel help result.

30 results from Office Online EE'J

—_ ) ~
@) List of warksheet functions =
(by category)
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Math and trigonometry functions

Function Description

ABS Returns the absolute value of a number

CEILING Rounds a number to the nearest integer or to the nearest multiple of significance
COMBIN Returns the number of combinations for a given number of objects

EVEN Rounds a number up to the nearest even integer

EXP Returns e raised to the power of a given number

FACT Returns the factorial of a number

FACTDOUBLE  Returns the double factorial of a number

FLOOR Rounds a number down, toward zero

GCD Returns the greatest common divisor

INT Rounds a number down to the nearest integer
LCM Returns the least common multiple

LN Returns the natural logarithm of a number
LOG10 Returns the base-10 logarithm of a number

OoDD Rounds a number up to the nearest odd integer
Pl Returns the value of pi

POWER Returns the result of a number raised to a power
PRODUCT Multiplies its arguments

QUOTIENT Returns the integer portion of a division

RAND Returns a random number between 0 and 1

RANDBETWEEN Returns a random number between the numbers you specify
ROUND Rounds a number to a specified number of digits
ROUNDDOWN  Rounds a number down, toward zero

ROUNDUP Rounds a number up, away from zero

SERIESSUM Returns the sum of a power series based on the formula

SIGN Returns the sign of a number

SQRT Returns a positive square root

SQRTPI Returns the square root of (number * pi)
SUBTOTAL Returns a subtotal in a list or database
SUM Adds its arguments

SUMIF Adds the cells specified by a given criteria

SUMPRODUCT  Returns the sum of the products of corresponding array components

SUMSQ Returns the sum of the squares of the arguments

Returns the sum of the difference of squares of corresponding values in two
SUMX2MY2

arrays
SUMX2PY2 Returns the sum of the sum of squares of corresponding values in two arrays
SUMXMY2 Returns the sum of squares of differences of corresponding values in two arrays

TRUNC Truncates a number to an integer
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Of course there is no way to remember all these. Again however Excel makes the functions easy
to use. There is an Insert Function (or Paste Function) button.

Create a new heading in F1, LOGY, which will contain the natural logarithm of Y. All logs used
in POE are natural logs. Highlight F2 and click Insert Function.

Microsoft Excel - Book1
@_] Eile Edit Wew Insert Format Tools Data Window Help Adobef

HRN=A" NEWENRE RN N =N A RN AN S

; arial -0 - B 7 U|SEE]=HS % 0

F2 =
A | B Me WD | E [ F |

1 | Variable ¥ TR m Y2 LOGY

2 1 2 3 4 1

3 2 3 5 g

4 3 3 g 36

5 4 5 g 25

6 5 7 12 49

7| Sum 15 23

Go.

Insert Function

Search for a function:

natural logarithm ‘ Go
\‘

Or select a category: |M&t&ecenﬂy Used " |

Select a function:

SQRT(number)
Returns the square root of a number,

Help on this function [ oK ] [ Cancel ]

Excel will return some suggestions. Scroll down the list and note that the definitions of the
functions appear at the bottom.
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Insert Function

Search for a function:
natural logarithm ‘ Go

Or select a category: |Rec0mmended A |

Select & function:

EXP

GAMMALN !g

IMLN

MLOG2 R
IMLOG10 / definition
COSH

r'g

LN(number)
Returns the natural logarithm of a number,

Help on this function [ oK ] [ Cancel ]

Click OK. A Function Arguments dialog box opens. Enter the number you wish to take the
logarithm of, or to locate a cell click on the Data range box.

LM

Number | =

data range box

Returns the natural logarithm of a number.

Number iz the positive real number for which you want the natural logarithm.

Formula result =

Help on this function [ OK ] [ Cancel ]

With this box open select the cell C2. This enters the command =L N(C2) into F2. Press Enter.

A | B | ¢ | D |

. 1 | Variable X .___)’___‘ Sum

2 1 2 3
| 3 | 2 3 b 4
| 4 | 3 6 9
| 5 | 4 5 9
| 6 | 5 T 12
7| Sum 15 23

Back in the Function Arguments dialog box we find that the natural log of 2 is 0.693. Click OK.
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Function Arguments le

LN

Number | c2 =2

= 0.693147181
Returns the natural logarithm of @ number,

MNumber is the positive real number for which you want the natural logarithm.

Formula result = 0.693147181
Help on this function oK Cancel

Ly

The value is returned to the worksheet in F2. Once again we can Copy the formula to compute
the natural log of the remaining Y values.

E | F |

Y2 LOGY

4 0.693147

9

36

25

49

A | B | ¢ | b | E [ F |
1 | Variable X Y Sum Y2 LOGY
| 2 | 1 2 3 4 0693147
E 2 3 5 g 1.098612
[ 4 ] 3 6 g 36 1.791759
[ 5 | 4 5 9 25 1609438
6 | 5 7 12 49 1.94591
7| Sum 15 23

Once you know the function you wish, you can of course just enter the formula into a cell and
press Enter.

A | B | ¢ | b | E | E | G

1 | Variable X Y Sum Y2 LOGY

| 2 | 1 2 3 4 0.693147

| 3 | 2 3 ] 9 1.098612

| 4 | 3 6 9 36 1.791759

| 5 | 4 5 9 25 1.609438

| 6 | 5 7 12 49 1.94591

7] sim | 15
Ea &

Now that you have put lots of effort into this example, it is a good idea to save your work. On the
Excel Menu bar, select File/Save as

E‘_] File | Edit View [Insert Format Tools Data Window Help 2
: 3|l ew. a4 | Lo
?ﬁ open.. Ctrl+0 $ 9,
| Close

| Save crl+s | F
1 | Save As... I Loy
2 Ls 693147
3 lshl Save as Web Page... 098612
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In the resulting dialog box, find the folder in which you plan to save your work for POE. We will
use the path c:\data\excel. The standard extension for Excel files is *.xIs. Name the file and click

Save.
Save As E]
Save in: |_@ excel V| @ - | @ X i EH - Tools~

E @__]airhne.x\s @__]catﬂe.xls E_]consumpuon.xls E_]ﬂ:od.x\s g_]house;
I_";‘) @__]alcoho\.x\s E__]cas‘x\s E_]cpsl.xls E_]ﬂ:od_chapuz.xls @_]hous\ng
MyRecent | B andy.xis ) cespro. s B epsz.xs & fulmoon. xds Ehwage.
Documents | ) 2cparas. xis 5] chio.xis 5] cps. ks Efuktonfish.xis  Eindpro.x
P B bangla.xls Echap01.xds Ecps_smallds  Egascar.us Einflation
w B beer.ds Echard.xds Ecrime.sds ] gasga.xls Einsur.xds
Desktop @__]bond.scls @__]dohx\s E_]csmds E_]gdp.scls g_]ivregl.a
@__]brl‘x\s E__]domes.xls E_]demand.x\s E_]gold.xls @_]ivregz.a
2 = br,xs ) coal.xls = demo.xls B goif.xis B jobs.xls
= B broiler.xds & cobb.xls B edu_inc.xds B growth.xds Ekorea. x|
My Documents | B brumm.xds Hcocaine.xls Heuro.ds Hgrunfeldzds  Elearn.xs
B byd. s Ecola2.xs Hexrate.ds Hgrunfeld3.ds  Eliquor.d
'—1‘! @__]canada.x\s @__]cola.x\s E_]fa\mls E_]grunfe\d‘xls g_]lonl.x\s
5’ @_]capmz.xls E_]commube.xls E_]ﬁgurac-lx\s E_]hhsurvey‘x\s @_]Ionl.x\s
My Computer | [BH] cars, ys B computer. xls &) forida, wls EHhip, s EHlond_sm
< | >

File name: chap0 1.xis| v [ s

My Network. 1
Places Save s fype: |M|cmsnft Office Excel Workbook (=.xl<) v | Cancel

1.4 EXCEL FILES FOR PRINCIPLES OF ECONOMETRICS

The book Principles of Econometrics, 3e, uses many examples with data. These data files have
been saved as workbooks and are available for you to download to your computer. There are
about 150 such files. The data files and other supplementary materials can be downloaded from
two web locations. You should download not only the *.xIs files, but also the definition files,
which have the extension *.def. Download these files from either the publisher John Wiley and

Sons, or from the book website maintained by the authors.

1.4.1 John Wiley and Sons website

Using your web browser enter the address www.wiley.com/college/hill. Find, among the authors
named “Hill” the book Principles of Econometrics.

Home | Technology Solutions | Who's My Rep | About Wil

¢ Hill Titles

ECONOMETRICS

Principles of Econometrics, 3rd Edition cEm

R. Carter Hill, Louisiana State University
William E. Griffiths, University of Melbourne, Australia
Guay C. Lim, University of Melbourne, Australia

ISBM 978-0-471-72360-8, ©2008, 579 pages
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Click on the book title and follow the link to Supplements. Click on Supplements. There you
will find links to many supplement materials, including a link that will allow you to download all
the data files at once.

1.4.2 Principles of Econometrics website

Alternatively, you may wish to download individual files.

e Go to the site www.bus.Isu.edu/hill/poe for the data, errata and other supplements.
e For the Excel data files go to www.bus.Isu.edu/hill/poe/excel.htm.

1.4.3 Definition files

There is a data definition file for each data file used in the book. These are simple “text” or
“ASCII” files that can be opened with utilities like Notepad or Wordpad, or a word processor.
Locate food.def. Its contents are:

food.def

food_exp income

Obs: 40
1. food_exp (¥) weekly food expenditure in $
2. income ) weekly income in $100
Variable | Obs Mean Std. Dev. Min Max
_____________ e ——————————————————————————————
food_exp | 40 283.5735 112.6752 109.71 587.66
income | 40 19.60475 6.847773 3.69 33.4

The definition files contain variable names, variable definitions, and summary statistics.

1.4.4 The food expenditure data

In the first few chapters you will use data on household food expenditure. Locate the file food.xls
and open it. To illustrate, click on the Open icon on the Menu.

|§J!H =]

Navigate to the file you wish to open.




My Doouments

My Computer

My Netwerk
Haces

(L | T o g O e

¥ @ € X i T - Took-

1 el
| selne. xds Y cols s B grows.ds Ermewng.s Bjrice s B rondyaysis
| hzohol i Ecormute s Hlgunfedzoas  Himoney.ads Brobbery.ils Y rransport.iis
ancy.is Hioomputersds  Hlguafedids  Hjmonop.is = setary. s Eruffles s
aspiaens. s B rmnmmpten s 3] grunfeld, v Brearats S ssies vis Elanass
bangla. s Elepats Hrherveyahs E B st
beer.xds Eilymazass Srins = i xis
(R [ b _plar b xhe el [Py
v 2. o smals ] housiog.als ] W uterm.nds
e ke Ml arime.xs B brwege.nis S, ] vacan.xs
rovder ads. ] eu s Sewkoro. s e 18] vacanon, xbs
brueim. s [ dmand. s Bnfiaton s ] ar e
b ods Y dena. s Binsur.sds ] vacsis
canads s Hedy_nc s Svregrods B vote s
caomz.ds Heuro.s Hvregzois Evote. s
cars. s Blwa-wheat.sds

| P ol fype | g Mcrcsalt Office Excel Files (".a0"; ".ads; "andts "t bl "t *.mirtml; " som ", xla; "xdms .3 "nbs 00 ")

Fyetd. s

Open

Click file or enter name, then
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i3

The worksheet should appear as

=
E3 Microsoft Excel - food.xls
iE] Fle Edt View Insert Format Tool
HRR=A" BERENE WA N
: Arial -0 -|B I O
A2 - £ 115220001
A | B [ ¢ | D
food exp income
115_22! 369
135.98 4.39
119.34 475
114.96 6.03
187.05 12.47
243.92 12.98
267.43 14.2
2380 14.76
29594 15.32

So as to not alter the original file, you may want to save the file with a new name, such as
food_chap01.xls. Select File>Save As from the Excel Menu.

E3 Microsoft Excel - food.xls

File | Edit View [Insert Format Tools Data Window

Mew...

=

Open...

=

Close

Ctrl+M
Ctrl+0

Save

Ctrl+5

Save As...

;gq Save as Web Page...

In the dialog box enter

File name: food_chap01.xis

Save as type: |Micrnsnf't Office Excel Workbook (*.xls)
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Compute the summary statistics, to make sure they match the ones in food.def. Select
Tools>Data Analysis.

5

E3 Microsoft Excel - food_chap01.xls
] Ele Edit View Insert Format | Tools | Data  Window He

HRN=N" NENE = ul|?ﬂ| Data Analysis. |

EAriaI - 10 v| B I Data Analysis Plus
E14 - Fe b
A | B [ ¢ T o [E T F
1 |food exp| income
2 115 22 3.69
3 135.98 4.39

In the resulting dialog box choose Descriptive Statistics, then OK.

Analysis Tools

_OK
Anova: Two-Factor Without Replication -~
Correlation n Cancel
Covariance
Descriptive Statistics
Exponential Smoothing

F-Test Two-Sample for Variances

Fourier Analysis

Histogram %
Moving Average

Random Mumber Generation

£

In the Descriptive Statistics dialog box we must enter the Input Range of the data. Click on the
Data Range box.

=

Descriptive Statistics

Input

Input Range:

Grouped By: (&) Columns
O

[[] Labels in First Row

Output options data range box

The following box will open.

Descriptive Statistics

While it is open, highlight columns A & B, rows 1 to 41. You can do this by

e Click A1, hold down left mouse button, and drag over desired area; or
o Click A1, hold down Ctrl+Shift. Press right arrow — and then down arrow |.

In the resulting window click the Data Range box again.
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=
Descriptive Statistics

SAS1:58541

click data range
box again

Note that now the input range is filled in.

e The Excel data range is $A$1:$3B$41. This range locates the upper left corner of the
highlighted area (A1) and lower right corner (B41). The $ makes this an Absolute Cell
Reference, that will not be changed if the data are moved.

e Tick the box Labels in First Row so that these cells will not be treated as data.

Select the radio button New Worksheet Ply and enter a name for the new worksheet
page.

e Tick the box Summary Statistics so that Excel will print the results.

Click OK

Descriptive Statistics

Input
i QK
Input Range: |
Cancel

Grouped By: (®) Columns

O gons
Labels in First Row  sp—————————

input range
Output options
o] ange: s

() New Worksheet Ply: Descriptive Statistics
) New Workbook \
[ kth Largest:
[ kth Smallest:

The resulting worksheet is not formatted well. Select Format>Column>AutoFit Selection

Microsoft Excel - food_chap01.xls

@_] File Edit Wew Insert | Format | Tools Data Window Help Adobe PDF

Jljlgusa_ﬂl(ﬂ hl_'ﬁ? Cells... Ctrl+1 j|q.:u.|g 5

 Arial . 10 | Golumn » T:Tl Width. ..

= I N ey
A | B | c | D Hide

:1? food_exp income Unhide

3 |mean 283.5735 Mean 19.60475 Standard Width...

4 |Standard E 17.81551 Standard E 1.082728|

5 |Median 264 48 Median 20.03

6 |Mode #A - Mode #NIA

7 |Standard [ 112.6752 Standard [ 6847773
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One of the nice things about Microsoft Office is that information from one application can be
transferred to another. With the Descriptive Statistics highlighted, enter Ctrl+C to copy. In an
open document enter Ctrl+V to paste.

Now you have a nice table of statistics in your document that can be edited in the usual way.

food_exp income
Mean 283.5734993 Mean 19.60475005
Standard Error 17.81551026 Standard Error 1.08272795
Median 264.479996 Median 20.0299995
Mode #N/A Mode #N/A

Standard Deviation
Sample Variance

112.6751802 Standard Deviation
12695.69623 Sample Variance

6.847772819
46.89199259

The food expenditure data will be used extensively in the next chapter.

Kurtosis -0.002430221 Kurtosis 0.48455582
Skewness 0.511465877 Skewness -0.651185498
Range 477.949974 Range 29.710002
Minimum 109.709999 Minimum 3.69
Maximum 587.659973 Maximum 33.400002
Sum 11342.93997 Sum 784.190002
Count 40 Count 40
You may wish to save this file by clicking
=l



CHAPTER 2

The Simple Linear Regression
Model

CHAPTER OUTLINE

2.1 Plotting the Food Expenditure Data 2.4 Plotting the Least Squares Residuals
2.2 Estimating a Simple Regression 2.5 Prediction Using Excel

2.3 Plotting a Simple Regression

In this chapter we introduce the simple linear regression model and estimate a model of weekly
food expenditure. We also demonstrate the plotting capabilities of Excel and show how to use the
software to calculate the income elasticity of food expenditure, and to predict food expenditure
from our regression results.

2.1 PLOTTING THE FOOD EXPENDITURE DATA

We will use Chart Wizard to scatter plot the data. Open food.xIs file in Excel.

Microsoft Excel - food.xls
IZ_‘] File Edit View Insert Format Tools Data Window Help
ARN=A W= NN RN - SRR RS AN T LI
il R 5 ! i & Snaght |21 | window ﬁv !
Al - # food_exp I
[ A | B8 [ ¢ [ b [ g | F [ €

1 |food expl income

2| 11522 3.69

(3| 13598 439

4| 11934 475

5| 11496 6.03

6| 187.05 1247

7 243.92 12.98 .

8 | 26743 142 Chart Wizard

9| 23871 1476

(10| 29594 1532

21
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Place the cursor on the Chart Wizard icon and click. In the dialog box, choose the chart type as
XY (Scatter) and click next.

Standard Types | Custom Types I

Chart type: Chart sub-type:

<
{

Scatter. Compares pairs of values,

Press and Hold ko Wiew Sample |

Cancel | = Back I [ext > I Finish |

To define the Data Range, highlight the data after clicking on the space provided.

Chart Wizard - Step 2 of 4 - Chart S... [2|[%]

Data Range ‘ Series

To create a chart, dick in the Data range box. Then, on the
worksheet, select the cells that contain the data and labels you
want in the chart.

Data range: ‘
Series in: ) Rows k
(®) Columns
Data range box
Cancel l [ < Back H MNext > I [ Finish ]

Select the data columns and click Data range again

Source Data - Data range:
=Sheet1!$A$1:$B541] Exl

Aside: Referencing Cells

Select Help. Search the phrase “Cell Reference.” One of the resulting hits is

'Ej,l About cell and range
references
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Click this link to find the following description of cell references:

A reference identifies a cell or a range of cells on a worksheet and tells Microsoft Excel where to
look for the values or data you want to use in a formula. With references, you can use data
contained in different parts of a worksheet in one formula or use the value from one cell in
several formulas. You can also refer to cells on other sheets in the same workbook, and to other
workbooks. References to cells in other workbooks are called links.

= The Al reference style

By default, Excel uses the Al reference style, which refers to columns with letters (A through IV,
for a total of 256 columns) and refers to rows with numbers (1 through 65536). These letters and
numbers are called row and column headings. To refer to a cell, enter the column letter followed
by the row number. For example, B2 refers to the cell at the intersection of column B and row 2.

To refer to Use

The cell in column A and row 10 Al10
The range of cells in column A and rows 10 through 20 A10:A20
The range of cells in row 15 and columns B through E B15:E15
All cells in row 5 5:5

All cells in rows 5 through 10 5:10

All cells in column H H:H

All cells in columns H through J H:J

The range of cells in columns A through E and rows 10 through
20 A10:E20

Reference to another worksheet In the following example, the AVERAGE worksheet
function calculates the average value for the range B1:B10 on the worksheet named Marketing in
the same workbook.

Mame of the warkshest
|Mmhuwmufmnnlnm

=AVERAGE[Marketing|B1:B10)
Separaiaz The shast relanance
inom ke call ralarance

Note that the name of the worksheet and an exclamation point (!) precede the range reference.

Aside: Relative vs. Absolute References

On the same Help page, you will find the following useful information:
= The difference between relative and absolute references

Relative references A relative cell reference in a formula, such as Al, is based on the relative
position of the cell that contains the formula and the cell the reference refers to. If the position of
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the cell that contains the formula changes, the reference is changed. If you copy the formula
across rows or down columns, the reference automatically adjusts. By default, new formulas use
relative references. For example, if you copy a relative reference in cell B2 to cell B3, it
automatically adjusts from =Al to =A2.

I
k

Copied formula with relative reference

Absolute references An absolute cell reference in a formula, such as $A$1, always refer to a
cell in a specific location. If the position of the cell that contains the formula changes, the
absolute reference remains the same. If you copy the formula across rows or down columns, the
absolute reference does not adjust. By default, new formulas use relative references, and you need
to switch them to absolute references. For example, if you copy a absolute reference in cell B2 to
cell B3, it stays the same in both cells =$A$1.

A B |

1
2 | =FAFT
|3 | =51

Copied formula with absolute reference

2.1 (Continued)

Excel assumes that the first column is the X-variable. Select the Series tab.

Source Data

Data Range Series

income

40

s +
30
M . ¥ v

25 - et

* Y
a e e

¥

- *
10
5 {irr
0 T T

a 100 200 300 400 500 600 oo

On the Series tab define the columns that are X and Y variables again using the Data range box.
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Source Data

| Data Range | Series |

income
TO0
Ba0 F
: —
200 _ . ¥ o : v:*t “" [# incame|
200 + ¥ &L " i -
*
100 atee 4
a
i} 10 20 30 40 L)
Series
Name: | =Sheet11sB$1
XValues: | =Sheet1!SBS1:8B541 [
-
YValues: | =SheetilsAsusasdy” [Tl
[ Add Hﬂemove ]
Data range box

[ Cancel l[ < Back “ MNext = ][ Einish

e Click Next.
e Add or modify labels and title and click Next.

Chart Wizard - Step 3 of 4 - Chart Options

i Axes || Gridiines || Legend || Data Labels |
Chart title;
| Food_Exp | Food Ezp
Value (X) axis: oo
|incnme | il *
- 500
Value (¥) axis: 3" o0 . ¢q,,'0 .
|ﬁ:|0d_exp | % 00 a—a +
& R -t +
= zo0 4 P vk
| | 100 G’“ -
’ 0 10 20 an 40 50
| | income
l Cancel ] l < Back “ Mext = ] l Finish ]

e The default legend is not informative. To delete it go the Legend tab and uncheck box.
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Chart Wizard - Step 3 of 4 - Chart Options

Titles Axes Gridlines | Legend |Data Labels
Food_Ezp
Placemel —
o0
a0 3
I o 500 o
To'eliminate 3 soe —
€ > *
legend L K
- ¥ ¢V Y W
uncheck ton 1% .
' 0 1 a0 a0 an 50
income
[ Cancel ] [ < Back ” Next = ] [ Finish ]

e The last step is to place your chart. You can have the chart on the current worksheet or in
a new one. Make your choice and click Finish.

Chart Wizard - Step 4 of 4 - Chart Locat... E X

Place chart:
[._L (%) As new sheet: |1"C"2"2I exp plot |
i s B
—-_I—E () As objectin: |ShEEt1 v |
=
[ Cancel ] [ < Back ]

If you chose to print it in a new worksheet, your plot will appear in the new worksheet.

Food_Exp

nnnnn



To print a worksheet, first click on File/Page Setup.
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Newv...
Open...

Close

Ctri+H
Ctrl+0

Save

Save As...

B D L

Save as Web Page...

Save Workspace...

ij

File Search...

Ctrl+S

Permission

Web Page Preview

| Page Setup...

FH7

Print Preview

Print...

[y~

Ctrl+P

There you can choose the page layout, either Portrait or Landscape, and adjust the size. The
Print Preview allows you to see what will be printed before actually doing so, which saves time

and paper.

Page |Margins | Header/Footer I Sheet |

Orienkati
rignkation Print... |
L,
L,
@ P . Lemeics s Prink Preview |
Scaling Options. ..
" adjustko: 100 =% normal size
 Fit ba: Il 5‘ page(s) wide by Il E‘ tall
Paper size: ILetter (B5x11in) j
Frink qualty: e - |
First page number: I.C\uto
s[4 I Cancel I

Click on File/Print to open the print dialog window. In the Print dialog box, make sure the
printer is correctly specified. Here you can specify Print range, pages to be printed etc.
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Printer

MName: C:‘s hp officejet g series v
Status: Idle ==
Type: hp officejet g series
Where: DOT4_001
Comment:

[T Print to file
Print range Copies
@ al Number of copies: E-
() Pagefs) From: 3| To: Es

Print what Ijg Ijg Collate
(O Entire workbook

(¥) Active sheet(s)

l OK N[ Cancel ]

Alternatively, if the Print Preview is satisfactory, click on the printer icon on the main toolbar.

NG S A SRR -] 9%  x

/\L

print  hreyiew

paste

If you are creating a document, click inside the graph and enter Ctrl+C which copies the figure
into the “clipboard.” Transfer to an open document, place the cursor in the document where you
want the figure and enter Ctrl+V to paste the figure into the document, where it can be resized by

dragging a corner inward. Give it a try.

2.2 ESTIMATING A SIMPLE REGRESSION

To estimate the parameters b; and b, of the food expenditure equation, place cursor in an empty
cell and click on Tools/Data Analysis.

Data Analysis..

Data Analysis F‘m“‘s

bt
b

The Data Analysis tool may not automatically load with a default installation of the program, if
Data Analysis tool doesn't appear on the menu, click on Add-Ins under Tools:
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Goal Seek...

Scenarios...

Formula Auditing 3

Macro »
| Add-Ins... I

%7 AutoCorrect Options...

Customize...

Check the box next to the Analysis ToolPak add-in and click OK.

Add-Ins available;

v analysis ToolPak -
Analysis ToolPak - VEA
v Conditional Surn Wizard
[ Euro Currency Tools
[ Internet Assistant YEA
v Lockup Wizard

v Solver Add-in

[0]:4

Cancel

Erowse...

s

Aukaration. ..

-

Analysis ToolPak - WBA
YBA Functions Far Analysis ToolPak

Data Analysis should now appear in the Tools menu, and you should not have to run the add-ins

again for this option.

When the Data Analysis dialog box appears, click on Regression, then OK.

Data Analysis

Analysis Tools

Histogram s
Mowing Average

Random Mumber Generation

Rank and Percentile

Fegression

Sampling

t-Test: Paired Two Sample for Means

t-Test: Two-5ample Assuming Equal Variances
t-Test: Two-Sample Assuming Unequal Variances ==
z-Test: Two Sample for Means e

X

Cancel

IlE
=
I Al

Help

The Regression dialog box will appear with lots of user-defined inputs and options.
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rInput
Inpuk ¥ Range:

Inpuk ¥ Range:

[ Labels
[” Confidence Level:

[ Constart is ZErD

I 95 o

]

Cutput options
" Qutput Range:
% Mew Worksheet Ply:
" Mew Workbook

rResiduals

[ Residuals
[ standardized Residuals

[ Residual Plats
[ Line Fit Plots

~Tarmal Probahility
[ mormal Frobability Ploks

oK

Cancel

Help

To define the input ranges, first click on the Input Y Range box. The box will minimize.
Highlight the data in the y column, including the label. Do the same procedure to input the X

Range.
Other options:
o Don’t forget to check the Label box if you are including labels.
° Do not check the Constant is Zero box. This would suppress the intercept.
° The output can be sent to the current page or another page in the workbook.

Name the new worksheet Food Expenditure and hit Enter.

%" Mew Waorksheet Bly:
" New workbook

rInpuk
Input ¥ Range: |$.ﬁ.$1 Ak EY
Input % Rangs: |$B$1:4B441 EY
[v Labels [~ Constant is Zero
[ confidence Level: |95 %o

routput opkions
o Oukpuk Range: I :"J

IFDDd Expenditure|

rResidiuals

[ Residuals
[™ standardized Residuals

[ Residual Flots
[ Line Fit Plots

~Marmal Prabability:
™ Mormal Probability Ploks

K

Cancel

s

Help

Since you chose to place the output in a separate worksheet, a new worksheet will appear as a tab
in the lower left corner of the work area. If you click on the Food Expenditure tab, you will
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notice that the columns are not wide enough to show the cells completely. Highlight the data, or
the entire sheet, and click on Format/Column/Autofit Selection.

E Microsoft Excel - food.xls
E‘_W File Edit View Insert | Format | Tools Data Window Help Adobe PDF
PG A % Ca @R Cells. a1 Lio0% v M Anal
e ! : © Snagtt L' || Column M| AutoFit Selection %_[

1 »

Al - A SUnmmrer—ooron b

The output contains many items that you will learn about later. For now it is important to note
that the Coefficients corresponding to Intercept and income are the least squares estimates b, and
b,.

A | ¢ | o | & [ F | & | W | v |
_1 |[SUMMARY QUTPUT
2
3 Regression Stalistics
_4 |Multiple R 0620485472
_5 |R Square 0.385002221
_ 6 |Adjusted R Square 0.368818069
7 |Standard Error 89.51700429
8 |Obsemations 40
9
10 |ANOVA
1 df SS Ms F Significance F
_12 |Regression 1/ 190626.9788| 190626.9788 23.78884107  1.94586E-05
13 |Residual 38| 304505.1742| 8013.294058
_14 [Total 39 495132153
15
16 Coefficients | Standard Error t Stat P-value Lower 35% | Upper95% | Lower 95.0%  Upper 95.0%
17 |Intercept 8341600987 4341016182 1921577951 0062182379 -4 463267721 171.2952877| 4 463267721 171.2952877
_18 |income 102096425 2093263461 4 877380554 184586E-05 5972052202 14 4472328| 5872052202 14 4472328
19
0
21
2|
=
3
25|
26|
27|
28
29
30|
31|
32
H 4 » W' food exp plot ‘) Food Expenditure { Sheet1 / <

2.3 PLOTTING A SIMPLE REGRESSION

In order to plot the regression function we must re-estimate the food expenditure equation and
choose the Line Fit Plots option in the regression dialog box.
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~Inpuk
_OK
Input ¥ R.ange: $afl:add1 &
Input % Fange: 464136441 %
Hel |
[v Labels [ Constant is Zero sl

[ Confidence Level: |95 Yo
—Oukput oplions
" Sutput Range: I 3“
% New ‘Workshest Ply: IFDUd Expenditure

™ New Workbook

esiduals
[~ Residuals
[ standardized Residuals

ormal Probability
™ mormal Probability Plots

<17

Click OK. The graph will be produced, and placed on the same worksheet as the regression
output. If you can't find it on the worksheet, click on the File/Print Preview or click on the Print
Preview icon and look for it.

You will need to enhance your graph. Here are a few suggestions:

Right click on the legend and delete, if desired.

Income Line Fit Plot

E 1000
I 500+ +
R ol
|-|- T T T
0 10 20 a0 40

Income

+Food Exp

® Predil 2| Format Legend. ..

Food] oy
|

Left click once on the title to highlight it. Left click once more to edit. Name

appropriately. If you double click the box surrounding the title, a dialog box opens that
allows you more formatting options.
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= T I [ T T =
=
§Food Expenditure Regression§
=
. b
u’j 1000 Chart Area
= 500 ¢ o
S L ms s T3t <
il T T T 1
0 10 20 30 40
L] Income

Repeat for the Y and X axes if you want to change the names of the variables.
Notice that both the actual values of Y and the predicted values are plotted. To include the

estimated regression function, place the cursor over one of the predicted Y points (the pink ones)
until the caption "Series Predicted Y™ appears.

C D | E | F | G H |
o=
§Food Expenditure Regressiong

=

£ 1000

= 500+ .t

E Y S e b SN

b ' I Series "Predicted Food_Exp" Poink "23.62"

o 10 20 {?8.62, 380.515279)
1 Income

Right Click and choose Add Trendline.

Food Expenditure Regression

£ 1000
- 00 + .
-§ 0 el ﬂ-ﬂ-ﬁia':‘ gE l’%’f]‘ Format Data Series...
it
] 10 o Chart Type...

Source Data...

Income
Add Trendline. ..

B30, 2134 | 184658.2134 22 B3747655 20 Clear

1783.3618 §156.307075
A RTRD

Under the Type tab, choose Linear.
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Add Trendline 3]
| Options
Trend/Regression type
Linear Logarithmic Polyromial
Power Exponential Mowing Average
Based on series:
Predicted Food_Exp
[ QK ] [ Cancel ]

Under the Options tab, check the box next to Display equation on chart. Click OK.

Add Trendline ]

Type Options |

Trendline name

(®) Automatic:  Linear (Predicted Food_Exp)

Ogustom: |
Forecask

Forward: Units
Backward: Units

Csetintercept= [0 |

[«]:Display equation on chark:

[] pisplay R-squared walue on chart

[3!( ] [ Cancel ]

If your figure is small, and begins to get cluttered, increase its size by clicking inside the border.
Place the mouse arrow over the black square in the corner, until a double arrow appears. Then
drag the mouse, with the left button held down, to increase (or decrease) the figure size.

Your figure should look something like the one below.
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[ ] H
Food Expenditure Regression
y=102"Tx+ 83.416%
700 "Predicted Food_Exp" Trendline 1 Equation |
B500 + +
o 500
L ﬂ. 400 1 i
S 200 +
w 200 +
100 +
0 : I :
0 10 20 a0 40
Income
|| | | ||

2.4 PLOTTING THE LEAST SQUARES RESIDUALS

The least squares residuals are defined as
éi =Y _yi =Y _bl_bZXi

In order to plot the least squares residuals, we must re-estimate the food expenditure equation and
choose the Residual Plots option in the regression dialog box.

—Inpuk
_DK
Input ¥ Range: |$.ﬁ.$1 hadd EY
Cancel |
Input & Range: |$B$1 $EF41 :"J
Hel
Iv¥ Labels [ Constant is Zero __pl

[ Confidence Level: I'?JS %o

—oubput options
" Qutput Range: I fﬁ_]
¥ Mew Workshest Ply: IF::u:u:I Expenditure

£ Mew Workbook

~Residuals

[ Residuals
[ Standardized Residuals

Fit Ploks

—Marmal Probabiliky:
[ marrmal Probability Plots

If you wish to enhance your graph, you can do so by right clicking on chart area or plot area.
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0%
2
53

Residuals

Income Residual Plot

300
200 4 v
100 < . ”'." { /}‘ﬁ]“ Format Plot Area...
. i
0 &t I ""é .:, 3 - ol I Chart Type...
.
100 @ 10 * £U’: * a0 ¥ source Data,,,
+ + .
* Chart Options. .,
-200 A + Location,.,
-300 3D View..,
Income Chart Windaw

2.5 PREDICTION USING EXCEL

Obtaining predicted values from an estimated regression function can be done either by doing the

computations or using the TREND function.

Insert a new worksheet to the workbook select Insert/Worksheet on the main menu.

Rename the worksheet Predictions by right clicking on the tab.

Clear

IE_P' File Edit View | Insert | Format Toc
M= RENET R
Aricd i Columns
F3d - Worksheet I}_
| A | B i




== Tab Color...

O % Food Expenditure b, Sheet2 [ food 7

= | agname

ag | ILLI'ERE or Copy...
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Insert,..

Delete

Select All Sheets

Gl view Code

Ja=du

In the Predictions worksheet, create a template for prediction by copying the estimated
coefficients from the regression and labeling them appropriately. Enter the income value for
which you want to predict food expenditures. Create the formula for the predicted value of v,
y = b, +b,Income, using the cell references.

A | B | C
Fredicted Food Expenditure
b1 534160020
b2 102095429
Income

' hat |:EIS+§EL'-1*EIE l

[t U A RS R

The results in cell B6 will be 287.6088614.

A, | E | ¢
Predicted Food Expenditure
b1 83 41600202
b2 10.20954297
Incame 20
Yhat 287 6033614

Excel has a built in function that computes predicted values from simple regressions. The form of

the Trend function is

TREND(range of Y variable, range of X variable, value of xg)
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The value X, is the value at which the prediction is desired. To use this function, return to the
worksheet page containing the data. Type in the following command,

A | e | ¢ |''p ] E | F | 6 |
1 |Food Exp lncome ‘fhat
2] nsz 369 =TREND(AZ2:A41 B2:B41 20
3| 13598 439 T
4| 1934 475
5] 1489 6.03
B | 187.05 12.47
7| 24392 12.98
B 2743 14.2
85| Zma 14.76
in 05 G4 165372

The result will be in cell D2.

L2 - fe =TREMD{A2:A41 B2:B41 20)
A | B | ¢ | o | E | F

1 |Food_ExplIncame Y hat

2 Nazz 3.69 I EB?EDBBEM!

3| 13588 439

4 11934 4.75

a8 11498 5.03

B[ 187.05 12.47

7| 24382 12.98

(=] T o AD 147

As a final step, save your file. We recommend saving it under a new name, like food_chap02.xls,
so that the original data file will not be altered.
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Interval Estimation and Hypothesis
Testing

CHAPTER OUTLINE

3.1 Interval Estimation 3.2 Hypothesis Testing
3.1.1 Automatic interval estimates 3.2.1 Right-Tail tests
3.1.2 Constructing interval estimates 3.2.2 Left-Tall tests

3.2.3 Two-Tail tests

In this chapter we continue to work with the simple linear regression model and our model of
weekly food expenditure.

3.1 INTERVAL ESTIMATION

For the regression model y =f, +,X+e, and under assumptions SR1-SR6, the important result
that we use in this chapter is given by

:bk_Bk ~ t

t
se(b) "7

fork=1,2

Using this result we can show that the interval b, + tcse(bk ) has probability 1— o of containing
the true but unknown parameter 3, , where the “critical value” t; from a t-distribution such that
P(t>t)=P(t<-t)=a/2

3.1.1 Automatic interval estimates

To construct the confidence interval estimates, we will use the Regression function in Excel. To
do that, open the workbook containing the food expenditure regression that we considered in

39
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Chapter 2. Excel provides 95% confidence interval for the Least Squares estimates by checking

the Confidence Level box in the Regres

sion Dialog box.

~Inpuk
Input ¥ Range:

Inpuk ® Range:

| Labels
v Confidence Level:

[$a51: 40441

3

[$B41:4B441

[~ Constant is Zero

I 95 o

=

—

Cutpat opkions
" Dukput Range:
' Bew Worksheet Bly:
" Mew warkboak

| ~=

rResiduals

[ Residuals
[ standardized Residuals

[ Residual Plots
[ Line Fit Plots

rTormal Probability
[ Mormal Probability Plots

Excel will report the confidence interval in the Summary Output next to the coefficient
estimates. The results show the lower and upper values for the 95% confidence interval for the

coefficient estimates.

A [ &8 | c [ o | E | F [ & [ H | I I
15 =
16 Coefficients | Standard Evor t Stat P-value Lower 95% Upper 88% | Lower 85.0% | Upper 85.0%
A7 |Intercept §3.41600997 4341016192 1921577951 0.062182379 -4.463267721 171.2952877 -4 46067721 171..2902877
18 |Income 10.2096425 2093263461 4.877380554 1.94586E-05 5972052202 14.4472328 72052202 14.4472328
19
20 J\
T

1
M 4 ¢ #[\Sheet2 J Shestl /

|«

To have Excel calculate a different confidence interval, estimate a regression, and after checking
the Confidence Level box, type in the desired level, for example, 98 for 98% confidence interval.

~Input
Input ¥ Range:

Input £ Range:

[V Lahels

v Confidence Lewvel:

$ad1ind41
$B$1:4BE41

[™ Constant is ZErD

[55~ T
L3

rOutput opkion:
" output Range:

5| o]
ol |

_ tep |
=

O Mew Worksheet Bly:
™ Mew Warkhook

I Standardized Residuals

esiduals
™ Residuals

[~ Residual Plots
[ Line Fit Plats

ormal Probabilit:
™ Mormal Probabilicy Plats
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3.1.2 Constructing interval estimates

While using the automatic interval estimation feature in Excel is the quickest and easiest way to
obtain interval estimates, a general template can be created for calculating interval estimates.

To construct the interval estimates we require the least square estimates by, their standard
errors se(by) and the critical value for t-distribution, t.. We already know we can find the least
squares estimates by, their standard errors se(by) in summary output. We also need to find values
tc, such that a/2 of the probability is in either tail. As an example, the critical values that mark off
o/2 = .025 of the probability in each tail of a t-distribution with 38 degrees of freedom. Checking
Table 2 at the front of your book, we find that the value is t. = 2.024 on the positive side and,
using the symmetry of the t-distribution, — 2.024 on the negative side. Excel makes it easy to
compute critical values from the t-distribution using the TINV function.

To generate 95% confidence interval, first open the workbook containing the food
expenditure regression and insert a worksheet. Move the cursor over the tab with the default
name, right click, and rename the sheet t-values.

M 4 » »t-values / Food Expenditure /
Ready

Go to the newly created worksheet and select a cell. Click on the drop down menu next to Sum

).

B3 Microsoft Excel - food.xls

@_] File Edit Wiew Insert  Format  Tools Data Window  Help  AdoBPr

RN MR NI MW s W W A AN W 0 10 VNN IELCBNCY

ﬂ] ﬁ %J! E@-Snaglt 1| window v!
Find TINV from the Statistical Function category, and click OK.

EEx

B3 Microsoft Excel - food.xls

E‘Il File Edit ‘iew Insert Format Tools Data  Window  Help

R R=N " WE-RE NI AN NN - SRR N

{5 snaglt [ | windaw - ! Surn

Al - F:% fAverage
A B | C | ] | Count: H &=

; Max

3 Min
L | Mare Funckions. .. |

= r.

In case you don’t see Statistical Function on your menu, choose More Functions. Then, find
TINYV from the Statistical Function category, and click OK.
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Insert Function

Search For a Function:

Tvpe a brisf description of what wou want ko do and then
click. zo

Cr select a category: | Statistical - |

Select a function;

STDEYRA ~
STEYY

TDIST

TREND

TRIMMEAM =
TTEST bt

TIN¥({probability,deg_freedom)
Returns the inverse of the Student's t-distribution,

[ K F[ Cancel l

Help on this function

Alternatively, click on the Paste or Insert Function (f+) icon to open up the same search.

Microsoft Excel - food.xls

@_] Bile Edit “iew Inhsert Format Tools Data W
ARN=N" NS NEY A <N W= A

i ) B0 !
{ & Snaglt 2| window - !
111 -

A | B | ¢ | D E |
1 |food_exp income IngertFunction

Either way, in the TINV dialog box, fill in the box as shown below.

Function Arguments

TIMY

%:|= 005
(5| = =8

= 2.024394147

Probability |0.05]

Deg_freedom | 35

Returns the inverse of the Student's E-distribution.

Probability is the probability associated with the bwo-tailed Student's t-distribution, a

rumbet between 0 and 1 inclusive,

Formula result = 2024394147

)

Help on this function [

The Probability value you need to fill in is the a in two-tails of the t-distribution. Enter the
degrees of freedom, 38, and click OK. The resulting value, 2.024394147 will appear in your
worksheet when you click OK.
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We can now create a Confidence Interval Template. Cells with bold border require user
input, some obtained from the regression results.

A | 5] |

| 1 |Imterval Estimation in Simple Reqression

2
| 3 |Data Input
EN Sample Size
| 5 | Confidence Level
| B | Least Square Estimate
| 7 | Standard Error
| & |Computed Values
| 9 | df| =B4-2
10| t =TIMw(1-B5,B4-2)
11| half-width =B10*B7
|12 |Confidence Interval
113 | Lower Limit =B8-B11
|14 | Upper Limit =B6+B11

Once you have the worksheet, the Least Squares Estimates and the Standard Error values can
be typed in, or can be copied from the regression results on the food expenditure worksheet.

A [ B |

| 1 |Interval Estimation in Simple Regression

2
' 3 |Data Input
KX Sample Size 40
| 5 | Confidence Level 0.95
B | Least Square Estimate 10.2096425
| 7| Standard Error 2093263461
| 8 |Computed Values
EN df 38
10 t 2024394147
1T halfwidth 4.237550298
12 |Confidence Interval
| 13 | Lowver Limit 5972052202

1 Upper Limit 14.4472328

3.2 HYPOTHESIS TESTING

Inference in the linear regression model includes tests of hypotheses about parameters which also
depend upon Student’s t-distribution. One- or two-tail general tests can be calculated by methods
similar to the confidence interval construction. The required ingredients are results from the least
squares estimation and the ability to use the Excel functions TINV and TDIST.

3.2.1 Right-Tail tests

To test the hypothesis H,:3, =0 against the alternative that it is positive (>0), as described in

Chapter 3.4.1a of POE, we use a one-tail significance test. For this purpose, we must compute the
value of the critical values that define the rejection region, the test statistic and the p-value of the
test.
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e If we choose the a = .05 level of significance, the critical value is the 95" percentile of
the tss) distribution which can be computed by the TINV function discussed earlier.
TINV(0.10, 38) = 1.685954461. The value returned is the right tail critical value.
Beware that the Excel function TINV(probability, degrees of freedom) returns the value
such that the area in the two-tails of the t(df) distribution equals the given probability
value. Thus if we want a critical value such that o = .05 is in the right tail, we must
provide the TINV function with probability = .10.

The test statistic is the ratio of the estimate b, to its standard error, se(b,).

For the p-value, we use the TDIST function where the amount of probability in the right-
tail of a t-distribution with 38 degrees of freedom can be computed. To obtain this value,
we find TDIST from the Statistical Function category under either Sum drop down
menu, or Paste Function.

TDIST
% |4.877380554 i = 4.577380554
Deg_freedom |38 j‘_] =33
Tails |1 =1

= 9,72931E-06
Returns the Student's t-distribution.

Tails specifies the number of distribution tails ta return: one-tailed distribution
= 1; bwo-tailed distribution = 2,

Farmula result = 9,72931E-06
Help on this Funckion o I Cancel |

This work can be simplified by using a template that can be used when needed.

A [ B
Right Tailed Test for Simple Regression Model
Data Input

Sample Size
Estimate
Standard Error
Ha

Alpha

Computed Values

df =632
t|=(B4-B6)/B5

o

Right-Tail Test

)

Right Critical Yalue =TINV(2*E7 BY)

13 Decision =IF{B10>=E16,"Reject Ho","Do Mot Reject Mull)

14| p-value =IF(B10-0,TDIST(E10,89,1),1-TDIST(ABS(E10),B9,1))
15

16|

_17 |Right Tailed Test for Simple Regression Model

_18 |Data Input

18 Sample Size 40

20 Estimate 10.2096425

21 Standard Error 2.093263461

22 Ho 0
23| Alpha 0.08
_24 |Computed Values

25| df 38
26 | t 4877380554
_27 |Right-Tail Test

28| Right Critical Value 1.685954461
29| Decigian Reject Ho
30| p-value 9.72931E-06
31
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The t-statistic value 4.8773 falls in the rejection region, and p-value is less than the level of
significance a, thus we reject this null hypothesis.

Right Tailed Test for Simple Regression Model
Data Input
Sample Size 40
Estimate 10.2096425
Standard Errar 2093263461
Ha ' 5
o Alpha (.05
Computed Values /
df 38
t 2.488765794
Right-Tail Test
Right Critical alue 1.655954461
Decision Reject Ho
p-value 0.008658183

To test an economic hypothesis such as H;:B, <5 against H,:, >5, the same steps are

followed except for the construction of the t-statistic. This can be accomplished by replacing the
0 with 5 in our template.

The t-statistic value 2.4887 falls in the rejection region, and p-value is smaller than the level
of significance a, thus we reject this null hypothesis.

3.2.2 Left-Tail tests

To test the significance, we test H, :3, >0 against H, :3, <0. The value of the t-statistic for this
null and alternative hypothesis is the same as for a right-tailed test.

e If we choose the a = .05 level of significance, the critical value is the 5™ percentile of the
t3s) distribution which can be computed by the TINV function discussed earlier.
—TINV(0.10, 38) = —1.685954461. The value returned is the right tail critical value.

The test statistic is the ratio of the estimate b, to its standard error, se(b,).
The p-value, is the area to the left of the calculated t-statistic.

Let’s plug in the left tail values into our template:
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A | B
Left Tail Test for Sirmple Regression Model
Data Input
Sample Size
Estimate
Standard Error
Ho
Alpha
Computed Values
df =B3-2

t =(B4-B6)/B5
Left-Tail Test
¢h Left Critical Walue =-TINY(Z*E7 BZ)

Decision =IF{B10<=B12"Reject Ho","Do Mot Reject Mull™
p-value =IF(B10<0,TOIST(ABS(B10),B9,13,1-TDIST(ABS(B10),B3,17)

Left Tail Test for Sirmple Regression Model
Data Input

[ AR RN TR RN R E R N N]  SV T () [FSCN p (PR PR [PUPU) GUIPN P DEIFU PPN Y

Sample Size 40
Estimate 10.2096425
Standard Error 2093263461
Ho 0
Alpha 0.05

Computed Values
df 33
t 4 877380554

Left-Tail Test

Left Critical Value -1.685954461
Decision Do Mot Reject Mull
pvalue 0999990271

To test the null hypothesis that 3, > 12 against the alternative B,< 12, we use the template and
plug in the input numbers. The t-statistic value —1.6859 does not fall in the rejection region, and
p-value is greater than the level of significance a, thus we fail to reject this null hypothesis.

Left Tail Test for Simple Regression Model
Data Input

3.2.3 Two-Tail tests

For the two tail test of the null hypothesis that 3, =0 against the alternative that 3, # 0 the same

steps are taken. We can plug the necessary information into the template.

Sample Size 40
Estimate 10.2096425
Standard Errar 2.093263461
Ho 12
Alpha 0.05

Computed Values
df 35
t -0.85529457

Left-Tail Test

Left Critical “alue -1.685954461
Decision Do Mot Reject Mull
p-value 0.1985874343
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Microsoft Excel - food.xls

E_W File Edit ‘iew Insert Faormat  Tools Data  Window Help  Adobe POF

AN RERENNE N2 N TR AR AR - >

T.L\| = = H i@SnagIt &1 | window - !
B13 - A =IF(OR(B10==-B20 B10==B20),"Reject Ha","Do
A, | B

1 |Two Tail Test for Simple Regression Model

2 |Data Input

3 mample Size

4 Estimate

5 Standard Error

G Ho

7 Alpha

5 |Computed Values

9 df =B3-2

10 t|=(B4-BE1/B5

11 [Two-Tail Test

12 Ahsolute Critical Yalue =TINWV(EBET B9

13 Decision|Heject Ho .
14 p-value =TDISTEABS(E101,B2,2)
15

16 [Two Tail Test for Simple Regression Maodel

17 |Data Input

18 Sample Size 40
19 Estimate 1020965425
20 Standard Errar 2.09532635461
21 Ho 0
22 Alpha 0.05
23 |Computed Values

24 df 33
25 1 4877380554
26 |Two-Tail Test

27 Absolute Critical Walue 2024394147
28 Decision Reject Ho
29 p-value 1.594586E-05

Since the t-statistic value 4.8773 falls in the rejection region, and p-value is smaller than the level
of significance a, thus we reject this null hypothesis. This test is also carried out by Excel within
the Regression Summary Output labeled t-Statistic and p-value.

Coefficients | Standard Eror |t Stat Fovalue |\
Intercept | 8341600937 43 41016192 1.9215775951| 0.052182379
Incame 102086425 2.093263451 [4.577380554 1 94586E-05

To test the null hypothesis that 3, = 12.5 against the alternative B, # 12.5, we use the two-tailed
test template and plug in the input numbers. The t-statistic value —1.6859 does not fall in the
rejection region, and p-value is greater than the level of significance a, thus we fail to reject this
null hypothesis.
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Twao Tail Test for Simple Regression Model

Data Input

Computed Values

Two-Tail Test

Sample Size
Estimate
Standard Error
Ho

Alpha

df
t

Absolute Crtical Walue
Decision
p-value

40

10.2096425

2093263461

12.5

0.05

35
-1.054156346

2024394147
Reject Ho
0.2807 73757




CHAPTER 4

Prediction, Goodness-of-Fit, and
Modeling Issues

CHAPTER OUTLINE

4.1 Prediction for the Food Expenditure Model 4.4 Modeling Issues

4.1.1 Calculating the standard error of the 4.4.1 Scaling the data

forecast 4.4.2 The log-linear model

4.1.2 Prediction interval 4.4.3 The linear-log model
4.2 Measuring Goodness-of-Fit 4.4.4 The log-log model

42.1R? 4.5 More Examples

4.2.2 Covariance and correlation analysis 4.5.1 Residual analysis with wheat data
4.3 Residual Diagnostics 4.5.2 Log-linear model with wage data

4.3.1 The Jarque-Bera test 4.5.3 Generalized R?

4.1 PREDICTION IN THE FOOD EXPENDITURE MODEL

We have already illustrated how to obtain the predicted values for the food expenditure for a
household in Chapter 2. In this chapter, we will calculate the standard error of the forecasted
value and construct a prediction interval.

4.1.1 Calculating the standard error of the forecast

Recall from Section 2.6 of this manual, the forecasted value of household food expenditure for a
household with income of $2000 per week is calculated as $287.6088614. Now, we will compute
the standard error of the forecasted value where forecast error is calculated as

f= Yo — yo Z(Bl +B2X0 +eo)_(b| +b2Xo)

The estimated variance for the forecast error is

49
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And the square root of the estimated variance is the standard error of the forecast.

Se(f)szar(f)

To calculate the forecast error for the food expenditure data, open the food.xls file. In addition to
the summary regression output (see Section 2.3 of this manual), we will need the sample mean of
income. To obtain the sample mean of income select Tools/Data Analysis and from the menu
choose Descriptive Statistics.

Analysis Tools
04

Anova; Single Fackor

&2

Anova: Twao-Fackor Without Replication
Correlation

o |
Anowva: Two-Factor With Replication

Help

kEakistics
Exponential Smoothing

F-Test Two-Sample For Yariances
Fourier Analysis

Histograrn

£

In the dialog window specify the data range and ask for summary statistics.

Descriptive Statistics rg|
Input
Inpuk Range: jtat1: tEt 2| m
C |
Grouped By: (® Columns
Oons

Labels in First Row

Cutput options

O Qutput Range:

() New workbook

Sumrmnary skatistics
[ confidence Level For Mean: ,_| %o
[ Kth Largest:
[ kth Smallest:

Excel will provide the univariate summary statistics for Food Expenditure and Income variables.
We will use the mean of income and sample size in the calculation of the standard error of the
forecast.
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Microsoft Excel - food.xls

E_I] File Edit ‘Wiew Insert Format  Tools  Data  Wwindow Help  Ad
WA= DENETIE A2 AR Y SR A R
Ehv Rl R H : (& snaalt |1 | window - !

C15 A b
A | B | C | 0 |

1 Food Exp Income

2
Ehﬂean 253.5734993 Mean 19.60475
| 4 |Standard Error 1781551026 Standard Errar _/%01.082728
| 5 |Median 264479996 Median i 20.03
| B [Mode A 'ode A,
| 7 |Standard Deviation | 112.6751802 Standard Deviation | 6.847773
| B8 |[Sample Yariance 12695 69623 Sample Yariance | 45.89199
| 9 |Kurtosis -0.002430221 Kurtosis 0.484556
| 10 [Skewness 0.511465877 Skewness 0.65119
|11 |Range A77.949974 Hange 2971
|12 [Minimum 109709993 Minimum 3.69
|13 |Maximum 537 659973 Maximum 33.4
|14 [Sum 11342.93597 Sum NJHQ

15 [Count 40 Count 40

16

Now, we can go back to Regression Output, and plug in the necessary numbers into our formula
and calculate the standard error of the forecast. Recall from above that the formula 1s

and

se(f)=/var(f)

The formula indicates that, the farther X, is from the sample mean X, the larger the variance of

the prediction error, the smaller the sample size, the larger the forecast error and the less reliable
the prediction is likely to be.
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Microsoft Excel - food.xls

@_1 Bile Edit Wiew Insert  Formak  Tools  Dats Window  Help Adobe PDF

PN E 2SS %R S -- 8T A 2]

bRl A ! P S snagl | window - !
B2 - B =SORTEDHE13HB0DF13A40)+(A22-19 6047500525 CH1542)
A | B | C | D | E
| 9 |
10 | ANOWA,
11 of S5 s F
| 12 |Regression 1 190626.9788 1906269788 23.78884107
| 13 |Residual 38 3045051742 8013.294058
14 |Total e 39 495132 153 ‘\_
15 Il
1k Coefficients | Standard Eror t Stat P-value
| 17 [Intercept 83 41600997 43 41016192 1915877951 0.0R2182379
18 |Income 10209642560 2.093263461 4 877380554 1 94585E-05
|19 |
|20 |
|21 | INCOME SE of forecast
22 | 20.0000 90.6328_
| 23 | / 26,0000 1046529
| 24 | 30.0000 110.265597

To calculate the standard error of the forecast for X,, we will need the 6° which is the Mean
Squared Residual (MSR) from cell D13 in the ANOVA table, the Var(b2) which is the square

of the standard error of income from cell C18 and x, which is $2000. Once we type in the

formula, it is possible to make the same calculation for different values of income.

4.1.2 Prediction interval

We construct a 100(1 — o) % prediction interval as

Yo +tse(f)

Since forecasted value and the standard error of forecast have been already calculated,
constructing the confidence interval is very straightforward. Recall that we can obtain the t,

values as shown in Section 3.1.2 and the forecasted values in Section2.6 of this manual.
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Microsoft Excel - food.xls

IE_I’I File Edit ‘View Insert Format Tools Data  Window  Help  Adobe FDF
HANEA" N IR REN A N TR - R AR RN R R I
H i Sl & ! QSnagIt 1= | wWindow -
c22 e =+D22- 417522
A | B C | 3] E |
| 9 |
10 [ANOWA,
il df 55 s F i}
| 12 |Regression 1 190B826.97585 190626.9785 | 23.78354107 | 1.
| 13 |Residual 34 3045051742 5013.294058
14 Total 39 495132153
15
16 Coefficients | Standard Error b Stat FP-valwe Lo
17 |Intercept 8341600997 43 41016192 1921577951 0062182379 -4
18 [Income 102096425 2.093263461 4877380554 1.94586E-05 5.
19
| 20 |
21 |INCOME SFE of forecast ower Bound |Forecasted Value Upper Bound
| 22 | 20.0000 90.6323 . 1 287 6033 A471.0854
| 23 | 25.0000 104 6529 126.79585 338.6571 550.51
| 24 | 30.0000 11025597 166. 4962 389.7053 5129144
25

We can also create a worksheet, name it predictions and calculate standard error of forecast and
the prediction intervals for specified values of income.

4.2 MEASURING GODDNESS-OF-FIT

The ANOVA table in the regression output provides the goodness-of-fit measures.

2

Z(y- +E:v=

\ v

SST=8SR+ SSE

9
o SSR (explained)
|11 SSE (unexplained)

12
I number of x's f

T4 ANOVA e

15 e if I ‘ Ms F Significance F
| 16 |Regression 190628 g 190625.9788 2378884107 1.94586E-05
|17 |Residual 3045051742 5013.294055

15 |Total 39 495132.153 Cg
119 - -
120 | N-2 -

21 N S5T (explained+unexplained)
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4.2.1 Calculating R?

In the simple regression model, the R’ is the square of the sample correlation between the X and y
variables. It is calculated as R®=SSR/SST =1-SSE/SST is reported in standard regression

output.

Microsoft Excel - food. xls
@_] File Edit \iew Insert Format  Toold

ARN=A" BERE = RNk NP

ﬁ @ = ! aSnagIt &' | window
028 - 23
A | B |
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.6204585472
R Square 0.335002221

Adjusted R Sguare OWRE5158069
Standard Error a9 0429
Dhservations 40

b

4.2.2 Covariance and correlation analysis

The covariance and correlation can tell us about the linear relationship between two variables, a
primary concern of linear regression. Specifically, the covariance tells us the direction of the
linear relationship, while the correlation is a measure of the strength (and direction) of the linear
relationship. Multiple R, in the simple regression output, gives us the square root of R* which is
the correlation between X and Y.

Microsoft Excel - food.xls

E‘_’] Eile  Edit “iew Insert Format T
IRN=A" BRI RN
sl i 5 ! § S snaglt [ | window

B22 - B =S0RT(EDS
A | B |
1 [SUMMARY OUTPUT
2
3 Regression Statistics
4 [Multiple R 0.620485472
5 |R Square 0. 335002221
| B |Adjusted R Square  J 0.363518085
| 7 |Standard Errar | 89.51700429
8 |Observations 40

A more general way to calculate covariance and correlation can be achieved by utilizing the Data
Analysis under the Tools menu.
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Data Analysis E|
Analysis Tools
= Ck
Anovva: Two-Fackor Wikhout Replication - _
T ————

Covariance
Descripbive Statistics

Exponential Sroathing
F-Test Two-3ample For Yariances
Fourier Analysis

Histagram

Maowing Average
Random Mumber Generation

£

The sample correlation coefficient, r, measures the direction and strength of the linear
relationship between two variables and is between —1 and 1. To obtain the sample correlation
coefficient, choose correlation from the Tool/Data Analysis menu and click OK. The
Correlation dialog box will appear. Fill in the appropriate input range and be sure to check the
Labels in First Row box since labels are included. Place the output on a new worksheet named
Correlation and click OK.

Correlation [‘5—(|

Input

Input Range: | t0%1 46541
arouped By: (®) Columns

O

Labels in First Row

Outpuk options

{:!' Quktput Range: | %
(%) Mew Workshesat Ely: |C|:|rrelati|:|n| |
) Mew Workbook,

The correlations are:

E3 Microsoft Excel - Book1
@_] File Edit ‘iew Insert Format

ARNE=N" BERE = NENE A

{ o = ﬁ!i@ﬁnagn fo | windo

h24 fx
A | B | |
1 Food Exp Income
2 |Food_Exp 1
3 |Incorne 0.6204585 1
4

The results will appear in the new worksheet, Correlation. You may need to format the
worksheet by choosing Format/Column/AutoFit Selection. The estimated correlation between
food expenditures and weekly income is 0.620485 which is the value given as Multiple R in the
regression output summary. Values on the diagonal of the correlation matrix will always equal 1.
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To find the sample covariance matrix, click on Tool/Data Analysis menu again and highlight
Covariance and click OK.

Analysis Tools
3

Anowva: Single Fackor -

Anowva: Two-Factor Wikh Replication

Anova: Twao-Factor Withaout Replication

Correlation

_ovariance
Descripkive Statiskics
Exponential Srookhing

F-Test Two-Sample For Yariances
Fourier Analysis

Histogram

£

The Covariance dialog box will appear. Fill in the appropriate input range and be sure to check
the Labels in First Row box since labels are included. Place the output on a new worksheet
named Covariance and click OK.

Covariance f$__<|

Inpuk
Input Range: | $A%1:$B541
Grouped By: (%) Colurnns

Ooms

Labels in First Row

Ouktpuk options

O Oukput Range: | |
(%) MNew Waorksheet Ply: |C0variance |
) Mew Workbook

i

The covariance matrix will appear on the new worksheet, but needs to be formatted. Choose
Format/Column/Auto Fit Selection.

E3 Microsoft Fxcel - Book1

@_] File Edit W%iew Insett Format
HRNE=R" RERERE= RN

'@ = = ! @SnagIt =1 | windo
A - &
A | B | ¢
Food Exp  Income
Food Exp 123783
Income 4667817 4571969

| LA D —

The diagonal elements of the covariance matrix are the estimated sample variances. The
covariance between food expenditures and weekly income is positive, suggesting a positive linear
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relationship. The value of the covariance, 466.7817, does not, however, tell you the strength of
that linear relationship.

4.3 Residual Diagnostics

Every time a regression model is estimated, certain regression diagnostics need to be carried out.
By analyzing the residuals of the fitted model, we may be able to detect model specification
problems. A histogram of the residuals can suggest the distribution of the errors, and the Jarque-
Bera test statistic can be used to formally test for normality. Both of these functions are important
since hypothesis testing and interval estimations are based on distributional assumptions.

In order to create a histogram of the residuals, we need to rerun the food expenditures model
and choose the Residuals output option.

Regression EJ
e L |
Input ¥ Range: Fag1:agal R
Cancel
Input % Range: $EE1 B4 1
Hel
Labels [ constant is Zera
[ Confidence Level: %

Oukpuk options

i

O Output Range:
(%) Mew Worksheet Ply:

() Mew workbook
Residuals

[ residual Plats
[ Line Fit Plats

Mormal Probability
[] Mormal Probability Ploks

Excel will provide the residuals for each observation, in addition to the standard Regression
output. Examine the values of the residuals, noting the lowest and highest values. Create a BIN
column next to the residuals column and determine the category values for the histogram. In this
column, enter the values -250, -200, -150, -100, -50, 0, 50, 100, 150, 200 and 250.

RESIDUAL OUTPUT
Obsarvation Fredicted Food Exp Residuals BinG
1 121.0895846 -5.869554573 -260
2 1282363347 | 7.743665349 -200
3 131.9118061 ) -12.57180612 -150
4 1449301491 -30.02014912 -100
g 210.7302493  -Z3.68024953 -50
B 559371677 2798283225 1]
7 2283929322 39.03706783 a0
8 234.1103322 4 59966777 100
9 230B277323) 5611226771 150
10 2607520503 B7.02794973 200
11 2605533075 -44.55330752 240
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Once you have entered the BIN column, choose Tools/Data Analysis/Histogram from the menu

bar, and click OK.
Data Analysis g|

Analysis Tools

Covariance ~

Descripkive Statistics Cancel

Exponential Smookhing

F-Test Two-Sample For Wariances

Fourier F\nalisis

Moving Average

Random Murber Generation

Rank and Percentile

Regression ¥
The Histogram dialog box will appear.
22 |RESIDUAL OUTPUT
23 -
24 Dbsarvationcted Food | Residuals Histogram El
|25 | 1) 121.0896 -5.869585792 -250 Trput
| 26 | 201282363 7.743555458 -200 Input Range: P
|27 | 3 131.9118, -12.57181584 -150 B Cancel
128 | 4 1449802 -30.02015524 -100 Bin Range: $O$25:4D%35
129 5 210.7303  -23.GE024694 50 | [ abek
130 | B 21589372 2798282839 0 -
131 | 72283929 39.03705954 50 Qutput optians
|32 | 8 2341103  4.599573736 100 ) Qutput Rangs: 5
133 | 9 239.8277  5B.11226894 150 N . Histogram
34 10 280752 6702795867 200| || © Mew Worksheet ply: 9
135 | 11| 260.5533  -44 55330734 250 () New Workhook
i 12| 264.8414 ) -24.439135119 [] Pareto {sorted histagram)
|37 | 13| 266.4749 120.095107 ] e Peartens
138 | 14| 2715797 -10.04972224 Chart Output
139 | 15| 272.8049  -23.4B487213 - ‘\
140 | 16| 275.3573  34.51271625
41 171 275 4584 70 43063952

Fill in the data ranges, by highlighting the residuals for the Input Range, and highlight the values
created in the BIN column for the Bin Range. Place the output on a new worksheet called
Histogram. After checking the Chart Output box, click OK.

Residuals Histogram

N
LanTay W
|
T

Frequency
i

Residual Values
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The Bin values and Frequencies appear, along with the histogram. Format the histogram graph
as needed. (Remove legend, resize, rename title, etc). The residuals seem to be centered around
zero, but the symmetry of the distribution seems questionable.

4.3.1 Jarque-Bera test for normality

A formal test of normality, the Jarque-Bera test, uses skewness and kurtosis, which can be easily
estimated with Excel.

As discussed earlier in Section 4.1.1, Excel has a tool for calculating the Descriptive
Statistics, which can be found on the Tools/Data Analysis menu. Skewness and kurtosis can also
be found among the statistics calculated.

Skewness is a measure of asymmetry of a distribution about its mean. For a sample
X;»X,,..., X an empirical measure of skewness is

where

Kurtosis measures the peakedness, or flatness, of a distribution. An empirical measure of
Kurtosis is

.
In the case of the least squares residuals, €, the formulas simplify because Zéi =0, making
i=l

€ =0. Thus the formulas for skewness and kurtosis of the least squares residuals are

A3 A4
s_ Z;/T k- 224/T

respectively where

Skewness measures the symmetry of the data, a value of zero indicating perfect symmetry.
Kurtosis refers to the "peakedness" of the distribution, with a value of 3 for a normal distribution.
Using these measures, the test statistic for the Jarque-Bera test for normality is
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B’-I
6

(K-3)
s

S+

where S is skewness and K is kurtosis. This test statistic follows a chi-square distribution with 2
degrees of freedom. Below is preparation of the worksheet for this calculation for the food
expenditures model.

Return to the worksheet containing the regression results and the residuals. Copy the column
containing the least squares residuals to a new worksheet and create three additional columns and
label them ‘ehatsquared’, ‘ehatcubed’ and ‘ehat to the fourth’. The formulas for these functions
are 2, 3 and ™4 respectively and is illustrated in the below figure. Once you copy the formulas
down the columns, you will be in a position to compute the S, K and JB statistics. With formulas
showing, this portion of the worksheet should look like

A | B | & | D | E | F | &
1 FResiduals ehat-aouared | ehatcubed | ehat to the fourth NORMALITY TEST
| 2 | -5.5B9559792 =+A2"2 =+AZ"3 =+A20d4 sigmatilda-sgquare | =+5UM(BE2:B41)/40
| 3 | 7.743655458 =+A342 =+4373 =+A504 sigmatilda =+50RT(F2)
| 4 | -12.57151584 =+A442 =+4403 =+4404 Skewness =SUMC2:C41 )/ (40*F3~T)
| 5 | -30.02015524 =+A542 =+A5 =+A50 Kurtosis =SUMD2: D411/ (40%F34)
| B | -23.68024894 =+AE42 =+AE"3 =+AEM JB =+{A0B(FA2H(F5-3)P2)4)
| 7 | 27.98282039 =+A742 =+4A74 =+A7 0 p-value =CHIDIST(FE 2]

4.4 MODELING ISSUES

4.4.1 Scaling the data

Change the scale of the variables can easily be done on the worksheet containing the data. Label
the empty column to the right of the independent variable INCOME™. In the first empty cell of
this column, type =B2*100. Copy the formula down the column.

(E] Ble  Edt
HARE=R" NERE NI RN A s
L pai %Hiﬁﬁnaglt 121 | wWindow

Wiews Insert Format Tools Data

c2 - F =+B2*100
A | B | ¢ WD |

| 1 | Food Exp  Income [Income”
L2 | 11522000 369 369k
| 3 | 135579956 435 435
|4 | 119.339956 475 475
| 6 | 114859959 £.03 E03
| 6 | 167.050003 12.47 1247

Estimate a regression, using the new independent variable, INCOME* instead of the original
independent variable, INCOME.
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IE_] File Edit “iew Insert Formab Tools Data  wWindow Help  Adobe PDF
INEERSS SV R % E R F -8 -3 2]
HL - = H l&Snaglt 21 | window - H
H25 - A
A B | c [ D [ E |
|1 | SUMMARY QUTPUT
2
3 Regression Statistics
|4 [Multiple R 0.620435472
| & |R Square 0.385002221
| B |Adjusted R Square 0.368815069
| 7 |Standard Errar §5.51700429
8 |Obserations 40
19|
10| AR A,
11 df 55 Wz F
| 12 |Regression 1 1905269785 1906525 97358 23.78584107
| 13 |Residual 38 3045051742 8013.224058
14 |Tatal A 33 495132153
15 N\
16 / \Coefﬁca’ems Standard Error t Stat Fyalue
|17 |Intercent 8341600997 43 411016192 1.921577951 ) 0.052132379
18 |Income® 0102096425 0.020932635  4.5877330554 1.94556E-05
19

The coefficient on INCOME has changed and so has its standard error. Everything else in the
regression output remained the same. When reporting results, be sure to note the appropriate units
of measure for both food expenditures and weekly income.

4.4.2 The log-linear model

The use of logarithmic transformations are very common with economic data. Transforming the
dependent variable using the log function will result in changing the interpretation of the
regression equation. To estimate the log-linear version of the food expenditure model, we need to
transform the dependent variable.

In(y)=B, +p,x+e

First, create a new column and label it In(Food_Exp). In this column, calculate the natural log of
food expenditures by typing =In(A2) in the first empty cell. Copy the formula down the column.

=

File Edit

Wiew

Inserk

Format  Tools Data  wir

ARNER" RERENI= RN N =N R

 mAry s = H E&Snaglt 1 | window

'H

c2 - % =+LMNAL)
& | B8 | & ‘Tq
| 1 | Food Exp | Income |In{Food Exp 2
|2 | 115.220001 388|4 . 74E843353)
| 3 | 135979996 438 4912507787
|4 | 119.339996 475 4781976529
| 5 | 114959999 G.03 4744554233
| B | 187.050003 1247 5231375977
| 7 | 243919993 1298 54965540294
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Estimate the regression model using the In(Food_Exp) as the dependent variable instead of
Food_Exp.

In fFood Expl

Cocfficients Standard Error t Stat
Intercept 4780239298 0158959254 30.07 210455

Incame 0.0400300 0007665105 52200376421

The interpretation for will be, an increase in income of $100 leads to a 4% increase in the food
expenditure.

4.4.3 The linear-log model

In linear-log model, the independent variable is transformed but not the dependent variable.

y=pB,+B,In(x)+e

15
16 Cocfficients Standard Ervor t Siat
17 | Intercept S7 18641517 84.23744235 -1 153719919

18 |Inflncome) 1321658424 26 80461184 4538357
E v
20

The interpretation for the linear-log model is, 1% increase in income, leads to about $1.32
increase in the food expenditure.

4.4.4 The log-log model

In log-log model, both the dependent and the independent variables are transformed. Estimated
B, represents the elasticity indicating % change in the y variable, when X variable increase by
1%.

In(y)=p, +B,In(x)+e

I (Food Bl W
Coefficients Standard Error t Stat Pyaive
Intercept 3.95356E918 0.294373 13.46443768 4 B39E-16

In(lncnme)v 05558581175 0100659514 5522350803 257277 E-0G
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In the food expenditure model, a 1% increase in income, is expected to increase food expenditure
by about 0.56%.

4.5 MORE EXAMPLES

4.5.1 Residual analysis with wheat data

For this example, open the excel file wa-wheat.xls. The dataset contains 48 observations on
average annual wheat yield in four different shires of Western Australia; Northampton, Chapman,
Mullewa, Greenough and TIME. First, estimate the simple regression of Greenough on time, and
ask for the residual plot.

Regression E|
Input
-OK ‘
Input ¥ Range: $D41: 50449 k
Input % Range: $E$1:$EP49
Hel
Labels [] Constant is Zero
[ confidence Level: a
Cutput options
.

() Qukput Range:

() New Worksheet Ely:
() New Workbook,

Residuals

Residuals
[ standardized Residuals

O

Marmal Probability
[ Hormal Probabiicy Ploks

Excel will produce the scatter plot of the residuals through time in addition to the standard
regression output.

] | |
time Residual Plot
08
06 + *
o 04+ +
L * B *
m 3 02 1+ + 4+ u
% 0 v‘s’ﬂT‘ ’I’¢"$ ¢I s *?‘Q v“ }
X 074 10 v 20 « S *40 50 B0
Lo
04 + . ¢
+*
06
time




64 Chapter 4

You can format the plot or change the plot type by right-clicking on the picture and selecting
Chart Type. You can then pick the desired chart type. Let’s pick columns for this example.

Standard Types | Cuskom Types

Chart type: Chart sub-type:
R ~

gl i [T
ﬁLine

> Pie

o5 WY (Scatker)

o ol (48 Y
D Doughnut

-@ Radar

@ Surface @

oy Bubble "

Options
R Clustered Column, Compares values across
cakegories,

[] pefault Formatting

[ Press and Hold ko Yiew Sample ]

[ Set as default chart ] I O [ Cancel ]
Lt

Excel will change the chart type of the residual plot, and provide a bar chart.

[ Time Res.idual Plot .
08
06 -
P 04 -
R 5 02 "
E 02:_.,_u|],,[||]ﬂuﬂ ||F|]u|l[||u|ﬂ- Hlﬂlwﬂllﬂ.u.nl i
04 -
06
time

Based on the residual analysis, if you think that is the incorrect functional form, you can generate
a new column in Excel and transform time variable and rerun the regression using the
transformed variable as your independent variable. To generate the cubic equation results
described in the text, generate a transformed column under column F and replace TIME with
TIME CUBE as your independent variable.
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ANEA" BN REN R N RN N

-

'@ = = H &SnagIt 1| window -
F2 - F =+E2341000000
A | B | ¢ | D
|1 |nerthampten chapman mullewa greencugh time time cube
2] 1.0014 1.0955  1.0233 09141 1| EI.EIEIEIEIEH!
3 | 06721 07595 05745 06721 2 D.000005
EN 0.7995 07527 045905 071 3 0.000027
5 | 0.7595 08603 09203 0.7258 4| 0.0000E4
- L | S i | Oc440c O Tono O O noodac

4.5.2 Log-linear model with wage data

We will use the cps_small data set to illustrate a log-linear model. Open the cps_small.xls data
set. In this chapter, we will only use EDUC and WAGES, so delete the rest of the columns. You
can delete the columns by highlighting the entire column and selecting Delete under Edit.

Microsoft Excel - cps_small.xls

Eﬂ File | Edit | Wiew Insert Format Tools Data  ‘Window Help  Adobe POF

LS Cortbnde M2 B lg - Flao-c-|@=-3l3llllage §
: oy o Paste CEHY B -

C1 Paste Special...
A Clear 3 -

L1 wal female  hlack white  midwest south west

2 Defete b 1 i 1 i 1 0
3] Delfhe shest y 0 0 1 1 0 0
4 Replace...  Chr+H P u o 1 o 1 g
| 5 | » ] 1 o] 1 o] 1 0
B | : - 1 0 1 0 1 0
7 3.09 13 4 0 ] 1 ] 1 0
8 | 3.16 13 1 0 o] 1 o] 0 1
19 | 3.7 12 22 1 o] 1 o] 1 0
1o 32 12 23 0 ] 1 ] 1 0
11| 3.7 12 4 1 o] 1 o] 0 1

12 3.32 12 11 1 o] 1 o] 0 1

After deleting the unwanted columns, save the Excel sheet as Ch4_Wage. Then, transform the
wage variable into log by typing the function in the first row below the label and copying down
the entire column.

Microsoft Excel - Ch4_wape.xls

@_] File Edit Wew Insert Format  Tools
HANE=A" NEWE N RNk N E=
P oE A ! G snalt & | Window

C2 - fe =+LN(AZ)
A | B | ¢ | D

|1 | wage educ  Infwaqge
2 203 13| D.?DBDSB!
| 3 | 207 12) 0727549
4 212 12) 0.751416
| 5 | 2.54 16 0.932164
B | 268 12 0.985817
7 3.09 13 1.128171
8 316 13 1.150572
ER 317 12) 1.183732
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You can now estimate the log-linear function by using the new variable, IN(WAGE) as the

dependent variable.

A B ] c [ D [ E ] F \ G [ H ] |
1 SUMMARY QUTPUT
2
3 Regression Statistics 4=
_4 Multiple R 0.4632717
_8 R Square 0.214520668
_B |Adjusted R Square 0213833715
_7 |Standard Error 0490151106
g | Observations 1000
9
10 ANOWA,
11 of 55 s F Significance £
12 |Regression 1 BS.E21I245 BEE2131245 2727235332)  2.39613E-54
13 |Residual 998 2397676103 0.240248106
14 Total 999 305.2889227
15
16 Coefficients | Standard Error t Stat F-value Lower 955 Upper 85% | Lower 85.0% | Upper 85.0%
17 |Intercept 0788374304 0.084897534 9.286186174 9.70516E-20) 0621776155  0.954972453 0621776155 0.954572453
18 |educ 0103760809 0.005283072 16.51434326 2.39613E-64  0.091431261  0.115090356  0.031431261  0.116090356
18

The forecasted value from the log-linear wage equation is

Inyhat =b, +b,x

In order to obtain a prediction for the dependent variables y, we need to use the exponential
function to get the “natural predictor” back.

A

y, = exp(lnyhat) =exp(b, +b,X)

In large samples a more precise predictor is obtained by correcting that “natural predictor” by
multiplying it by exp(6”/2). Using the coefficient estimates, the raw forecasted values can be
calculated as shown in the cell B23 of the below Excel output. Then, the natural predicted and the
corrected predictors are calculated.

A [ E [ c [ D
| 1 |SUMMARY OUTPUT
2
3 Regression Statistics
| 4 |Multiple R 0.4632717
| 5 |R Square 0.214620665
| 6 |Adjusted R Square 0.213833715
| 7 |Standard Error 0.490151106
8 |Obserations 1000
g
[ 10 |ANOYA
1 of 55 MS
| 12 [Regression 1 BE.52131245 B5.5213124508
| 13 |Residual i 998 239.7676103 0.2402458106
14 |Tatal 999 305.2889227
15
16 Ceefficients . Standard Error t Stat
|17 |Intercept 0.783374304 Y 0.034597534 9.286156174
18 |educ 0.103760803 /' 0.006253072 16.51434326
19
% mean of x= 13.285 (Correded Prediction
z Education Infwage) ¥ wage_n wage_c
| 23 | 1 =+§BH17+§EF157A23 =+EXP(B23) |=+EXP(B23)"EXP($D513/2]
24
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The standard error of the forecast can be found from the regression output using the formula
provided in 4.1.1. After the predicted values and the standard error of forecast is found, it is very
straight forward to construct the prediction interval. Remember that the corrected predictor will
always be greater than the natural predictor since the correction factor is always greater than one.

4.5.2 Generalized R?

The generalized R* is the appropriate measure of fit for this model is the square of the correlation
between the “best” predictor and the wage variable. Remember that the corrected predictor and
the natural predictor only differ by the constant so they have the same correlation to the wage
variable. You can calculate the generalized R® by using the Tools>Data Analysis>Correlation
and choose the column of Wage and the column of predicted (either corrected or natural) wage or
you can use the CORREL statistical function:

CORREL(wage,wage_c)
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Multiple Linear Regression

CHAPTER OUTLINE

5.1 Big Andy’'s Burger Barn 5.4 Confidence Intervals
5.2 Prediction 5.5 Hypothesis Testing
5.3 Sampling Precision 5.6 Goodness-of-Fit

5.1 BIG ANDY'S BURGER BARN

The multiple linear regression model is the extension of the simple model where there is more
than one explanatory variable. We will use Big Andy’s Burger Barn to transition to the multiple
regression model. This is a multiple regression model where the dependent variable, SALES is a
linear function of PRICE charged and the level of advertising, ADVERT.

SALES =, +B,PRICE +3,ADVERT +e¢

Using Excel to perform multiple regression is just like estimating a simple regression model,
except we will include all explanatory variables in the X range. Open andy.xls.

E1 Microsoft Excel - andy.xls

@ Fil= E Vie Insert  Format
HAN=N" NERE = NNk
T = H { S snaglt [ | windo

P23 A

e S - s B |
| 1 [\SALES _ PRICE _ ADVERT/
| 2] 73.2 £.69 1.3
El 7.8 B.49 2.9
| 4 ] B2.4 £.63 0.8
| 5 | B7.4 B.22 0.7
B 89.3 5.02 15
| 7] 70.3 B.41 13

68
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The first column is the monthly sales in $1,000 in a given city, the second column is the price of
hamburgers (actually a price index for goods sold) measured in dollars and the third column is the
advertising spending, also measured in $1,000. To estimate this model, go to Tools>Data
Analysis>Regression and fill in the regression dialog box so that the Y Range is the dependent
variable, SALES and the X Range includes both the PRICE and the ADVERT columns. Make sure
to check the Labels box and hit OK.

Inpuk
]
Input ¥ Range: $ad1:asTe| -‘\-
Input 2 Range: $B41:5C476
.
Labels [ constant is Zero
[] corfidence Level: %

Cutput opkions
O Cutpuk Range:
(%) New Waorksheset Ply:
) New Waorkbook
Residuals

[ residuals [ residual Flats
[] standardized Residuals [ILine Fit Plots

i

Tarrial Probability
[] Wormal Probability Plots

The results look very similar to what we've seen before, except now we have parameter estimates
and other information on PRICE and the ADVERT. This portion of the output appears as

A | B | 5 | b | E | F | B
SUMMARY QUTPUT

Regression Statistics

| 1|

2

3

4 |Multiple R 0.66952055

5 |R Sguare 0.445257 766

| B |Adjusted R Square 0.432931593

| 7 |Standard Errar 4886124039

8 |Observations 74

| 9 |

10 [ANDWA,

11 dif S5 WS F Signiticance F

| 12 |Regressian 2 1396538993 B98.2694953 2924785998  5.04036E-10

| 13 |Residual 72 1718.942985 2387420813

14 [Total 74 3115481975

15

16 Coefficients | Standard Enor t Stat F-yvalue Lower 95% Lipper 95%
17 |Intercept 189136131 B.351637595 1872172512 221429E-29]  106.2518552 0 131.5753711
13 |PRICE -7.907354804 1.095993037 ) -7 2152418260 442399100 -10.092676596 | -5.725052645

[4a]

ADWVERT 1.862603757 06331854583 2726252349 0.008035193) 0500658501 3.224509073
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5.2 PREDICTION

Using the estimated regression equation, we can now forecast values of sales for different values
of price and advertising like we did in the simple regression case using the below formula.

SALES =h, +b,PRICE +b,ADVERT

=118.9136131-7.907854804 * PRICE +1.862583787 * ADVERT

You can transfer this formula to Excel in the following fashion:

A | E | C |
1 | SUMWARY QOUTPLIT
16 Coefficlents Standard Errar
17 | Intercept 1189136131 B.351637555
18 |PRICE -7.907854804 1.095993037
19 |ADVERT 1862583737 0653135453
20
21
22 |PREDICTION
23 |Price Advert Expenditure | Sales Hat
24 4.00 1.00 =+5B517 +FE515"A24+5EF15"524
25 4.50 1.00 =+5B517 +FEF15"AL5+5EF157B25
26 5.00 1.20 =+§B517 +3E515°A26+56 519526
27 5.80 1.20 =+5B517 +HEEH187AL7 +EBH197B27

These formulas will yield the sales forecast for specified values of price and the advertising
expenditure as shown below.

A, | B | C
16 Coefliclents Standard Error
17 |Intercept 1158.9136131)  B.351637585
18 |PRICE -7 907354804 1.095893057
19 |ADVERT 1.862583787 ) 0.683195453
20
21
22 |PREDICTION
23 |Price Advert Expenditure | Sales Hat
24 4.00 1.00 8914477771
25 4.50 1.000 8519085031
26 5.00 1.200  §1.603439656
27 5.50 1.200 77 65551226
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5.3 SAMPLING PRECISION

To estimate the error variance, we will use the ANOVA (Analysis of Variance) table. Recall hat
the error variance of the regression equation is:

The formula is the sum of squared errors divided by the degrees of freedom. This quantity is
important and is reported automatically in the ANOVA table when a regression is estimated.

Sum of Squares Regression

HK 55R Sum of Squares Error SSE/(N-K)

S5E

ANDWA, Ny /

Wy o S F Significance F
Regression \ 2 1395 53899?98 25949‘ 2524765998 5.04086E-10
Residual 72| 1718.942985] 2387420813
Total 74 3115481978

Coetficients Standard Error t Shat P-value Lower 5% Upper D5%
Intercept 1189136131  B.351637595 18.72172512] 2 21429E-29]  106.2518552 1315753711
PRICE 7907854504 1.095993037 7 215241826 4 42399E-10 -10.09267696 -5.723032645
ADWERT 1862683757 0633195483 2726282349 0.005033199 0500853501 3224509073

The square root of the estimated regression variance is the Standard Error of the regression and
is reported in the Regression statistics.

Standard Error = vMSE =+/23.87420813 = 4.886124039

A | B | C | B
1 |SUMMARY OUTPUT
2
3 Regreasion Statistics
4 [Wultiple R 0.6E952055
5 |R Square 0. 448257766
b |Adjusted R Sguare 04329315593
7 |Standard Error 4586124039
g |Dbservations 75
d
10 | ANOVA \
11 df 55 s
12 |Regression 2 1396533959 R85 2R54953
13 |Residual 720 1718842985 23 574205813
14 |Tatal 74 3115.4315973
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The estimated least squares variance/covariance matrix can be represented as

var(b)  cov(bb,) cov(bb;)
Cov(b,b,,b,) =| cov(bb,) var(b,) cov(b,b;)

cov(b,b;) cov(b,b,) var(h)

The estimated variance/covariance matrix of the least squares estimators are not directly reported
by Excel. However, in the simple model they are easily obtained. The estimated variance of b, is

In the Excel output we are given the values of the standard errors for the least squares estimates.
The Standard Errors are reported in the column next to the Coefficient estimates. The
estimated variances can be obtained by squaring the standard errors.

Coefficients | Standard Error

Intercept 118.9136131 | »B.351637555
FRICE -7 80755480 1.095953037
ADVERT 1. 56255 0.653195453

6.351637585"2=4[ 3433[“]'1

Warlh1) =417 4034330014
Warlb2) =+C1542 1201200738
Warlh3) =+C1942 0. 466756065

So, we can fill in the variances in the covariance matrix as follows:

40.3433  cov(bb,) cov(b,b,)
Cov(b,b,,b,) =| cov(bb,) 1.2012  cov(b,b;)
cov(bhb,) cov(bb,)  .4668

The formula for cov(b,b,) is:
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- 62 * i 2
cov(b,b,)= B — where D x2 =D (% —%)" .
( 2 3) (1_r223)\/ZX122\/2X1§ k =h

Since the estimated covariances are not reported by Excel directly, we need to translate this
formula into Excel. Let’s start by creating a worksheet by copying our data worksheet. Choosing
Edit>Move or Copy Sheet.

E1 Microsoft Excel - andy. xls

@_)l File | Edit | Wiew Insert Format Tools D
H 3 22 =) Undo Insert Calumns Chrl+Z by
ﬁ @ 4 U Repeat Insert Colurns  Chrl+Y
Al | b Cut Chrl4+
A58 Copy ctlec |

; SAL L‘f& Office Clipboard. ..

3 4l Paste Chrl+Y

4 Paste Special...
% Paste as Hyperlink

7 Fill 2

] Zlear 3
i Delet

Tl Delete. ..

11 Delete Sheet

12 | Move or Cﬁy sheet...

13
4 4| Eind... Ctrl+F

14 Replace. .. ZkrlH+H
ﬁ Go To... Chrl+a

17

13 Links...

19 Ohijact

20 T a]

Move/Copy dialog box will open, choose the data sheet and make sure to click the Create a
copy box.

Mowve or Copy E|
Move selected sheets

To book:

|Book1 w |

Before sheet:

SheetZ
Sheets
(move ko end)
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You will see another tab added to your three existing worksheets. Rename the new sheet
covariance by highlighting the name of the tab. First calculation will be the sum of square
calculations in the denominator,

2

\szt*kz = i(xtk _Yk)

t=1

To accomplish this, go to the bottom of PRICE column and write the formula to get the average
X, and repeat it for ADVERT column.

E3 Microsoft Excel - andy.xls

@ File Edit Wiew Insert Format  Tools Data  Windoy

RN=R" BERE N NEN A N EEN - N

'@ @ ﬁ ! EeSnagIt &1 | window - !
B77 - & =+AVERAGE(B2B7E)
A | B | £ | D | E
| 73 | 742 511 . 07
| 74| 754 571 o7
| 75 | 813 2
K= 75 . 22
[77] CEerh TS
2 —iel

Next, create 2 new columns and name them PRICE - MEANP and ADVERT- MEANA. In these
columns, we will store the difference from the mean.

E3 Microsoft Excel - andy. xls

@_] File Edit  ‘iew Insert Format  Tools Data  Window Help  Adobe PDF
B R T e ] e
'@ @ ﬁ ! @Snaglt winduw - !

b2 - o =E2(E57)

A | B C | D | E

1 SALES PRICE ADVERT PRICE-MEANP ADVERT-MEANA
2 732 5.69 1.3' D.DDQBI -0.544
= T4 O = 40 a0

Recall that we store the mean of price in cell B77. By putting the $ signs, we are making sure,
EXCEL will use the same cell for the mean even when we copy our formula to another cell. Now,
copy and paste the formula to the rest of the column and repeat the process for the ADVERT-
MEANA column, too.



Multiple Linear Regression 75

E3 Microsoft Excel andy.xls

@_1 File | Edit | Wiew Insert Faormat Tools Data  Window Help  Adobe PDF
1.1[3 ¥} | Undo Paste Ctri+Z % Ca@E-F| 9 - -,,|$z,%l%
e 3| [aste Chr+y | . !

[ Paste apecial, .

4 Clear » | D | E |
1| SAl e T PRICE-MEANP = ADVERT-MEANA
2 | = 1.3§ 0.0024" 0544

3 Delete Sheet 2q
| 4 | Maove or Copy Sheet... &
5 0.7
5 | Replace, .. Chrl4+H 15
7| v 1.3
| 8 | 732 585 1.8

Once you have calculated the differences from means, we will now calculate the sum of squares.
Recall that we can do Sum of Squares calculations using the Insert function

Insert Function

Search for a function:

Cr select a categary: | Math & Trig v |

Select a function:

SUM
SLMIF
SUMPRODLICT

|

SUMEZMYZ

SUMKZPYZ =
SUMEMYE b
SUMSQ{numberl,number2,...)

Feeturns the sum of the squares of the arguments. The arguments can be
numbers, arrays, names, or references to cels that contain numbers,

teoon s et o) Coml

or simply by typing the formula = SUMSQ(...).

B3 Microsoft Excel andy. xls
@] File  Edit  Miew Insert  Format  Tools Data 'Window Help  Adobe PDF

iNEGH RS T LB F T i mse  Hiv
il S H) 2l | viindow .
F2 - e =SUMSQ(D2:D7E)
A | B | 5 | D
' 1 | SALES | PRICE | ADVERT PRICE-MEANP ADVERT MEANASS ADVERT
2 732 569 1:3 0.0025 -0.644] 15 659112 51.184
[ 3]  718] 643 23 0.8028 1.056 @

Once you have the squares calculated, we can now create columns to calculate the deviation, all
we have to do is to put the formula together. Recall that the formula is

23.(S

(L-ra VR R

cov(b,b;) =
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We already know that 6* = MSE = 23.8742 from our regression output. We have calculated the
correlation coefficient between PRICE and ADVERT to be 0.0264. Plug all the numbers into the
formula will give us the covariance of

cov(b,b;)=-0.01974.

5.4 CONFIDENCE INTERVALS

The 95% confidence interval for each parameter is provided by default in the Excel regression
output. If a different confidence interval is needed, Excel will also provide that. We can return to
the worksheet containing the original andy.xls data. Run the regression using Tools/Data
Analysis/Regression. We can then check the Confidence Level box and set the level to 90. Set
all other desired options and click OK.

Regression g|
Input
Input ¥ Range: Eas1:4a476 g mk-
Input 2 Range: $E$1:30476 EH
) Hel
[] constart is Zero
Confidence Level: a0 % *—_
Cubput options
() output Range: £
(%) Mews Worksheset Ply: Mew oukput
() Mew Workbook.
Residuals
[ Residuals [T residual Plats
[] standardized Residuals [TLine Fit Ploks

Maormal Probabilicy
[ mormal Probability Plots

Both the 95% and 90% confidence intervals are reported for the B, B2, and Bs.

16 Coefficients | Standard Eror t Stat Pvalie | Clower 95% | Upper 95%0 Cower 00.0% | Upper 90.05D)]
| 17 |Intercept MB8.9M36131 B.351637535 1872172512 2. 21429E-29  106.2518552 1 131.5753711 108.3299194 1294973065
| 18 |PRICE -7.907854804  1.095993037 -7 215241826 4. 42399E-100 -10.09267696 -5.723032645  -9.734101024  -6.081608514

19 |ADVERT 1.862683787 0683195483 27262582342 0.008038199 0500858501 3.224509073 0 072417946 3.0009838115

The 90% confidence interval for B3 suggests that an additional $1000 in advertising expenditures
leads to an increase in total revenue that is between $724 and $3001. Note that a 95% interval is
always wider than the 90% confidence interval.
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5.5 HYPOTHESIS TESTING

The t-test to test the significance of B,, that the coefficient is zero, against the two sided
alternative that it is not, is

_b,—0 -7.908

t =
se(b,) 1.096

=-7.215

Excel provides the t-stats and p-values in the regression output is the simplest way to test the
significance of a single coefficient. The results are

Coefficients | Standard Error t Stat Pvalye
Intercept 118.9136131 6351637595 1872172512 221429E-29
PRICE -7.907854804 0 1.096993037 -7 2152418260 4.42399E-10
ADYERT 1.862603787 0653195483 27262582349 0.0080353199

Recall that the t-stat is the coefficient divided by its standard error. Based on the reported p-
values, both b, and bsare significant at the 5% as well as 1% level.

Sometimes we will need general tests about our parameters, such as the elasticity of demand
where the null and alternative hypotheses are Hy: B, > 0: a decrease in price leads to a decrease in
total revenue (demand is price inelastic) and Hy: B, < 0: a decrease in price leads to an increase in
total revenue (demand is price elastic).

Or we may want to test an economic hypothesis such as

H, B, <1
H, B, >1

To test whether an increase in advertising expenditures is "worth it", that is, total revenues
increase enough to cover the increased cost of the advertising, we use the t-statistic

If the null hypothesis is true, it suggests that a dollar increase in advertising expenditures leads to
less than a dollar increase in total revenue. In this case, it doesn't make sense to spend that extra
dollar. On the other hand, if we reject the null hypothesis we conclude that there is sufficient
statistical evidence to suggest that an increase in advertising expenditures is "worth it" in terms of
the increase in total revenue. The value of the test statistic is

b1 18626-1 .
se(b;)  0.6832

Since 1.263<1.666, we do not reject the null hypothesis. The critical value for this one-tail test is
obtained as
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Function Arguments

TINY
Probability | . 10|

|

Deg_freedom |72

i
|

~J

[N

= 1.666293697
Returns the inverse of the Student's E-distribution,

Probability is the probability associated wikh the bwo-tailed Student's E-distribution, a
number between 0 and 1 inclusive.

Formula result = 1.6EGZI369T

Help on this Funckion [ (a4 ] [ Cancel

5.6 GOODNESS-OF-FIT

The goodness-of-fit of the regression model is based on the ANOVA table. The coefficient of
determination, R? and the ANOVA table are reported for the multiple regression model as they
are for the simple model. The R? measures the percent variation in dependent variable explained
by the regression model. We already know how to decompose the sums of squares as

SST=SSR+SSE

And the coefficient of determination, R?is

SSR SSE
RZ=""C - 2=
SST SST
The results from the regression are
A | B | C | D | E |
1 [SUMMARY OUTPUT
2
3 Regression Statistics
_ 4 |[Multiple R
5 |R Square
B |Adjusted R Square 0432937553
i dard Error 4.886124039
g Wbservations 74
0| ANOWA
11 of 55 s F
12 |Regression 2 1356538993 B95.2694963 29.24785993
13 |Residual 72 1718942885 Z23.87420813
14 |Total 74 311545815878
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The value R? = .448 means that 44.8% of the total variation in total revenue is explained by price
and advertising expenditures. However, there can be a problem with this measure in the multiple
regression model since addition of each additional explanatory variable will inflate the R* even if
there is no economic basis for the variables to appear in the model.

An alternative measure is the “adjusted R?”, denoted by Excel as Adjusted R Square is
reported just below R Square. Adjusted R Square imposes a penalty for adding explanatory
variables so it can never be larger than R%. The Adjusted-R? can also be calculated from the
ANOVA table.

m2_q_ SSE/(N-K)
SST /(N —1)

While this solves the problem associated with R® (which has a particular interpretation!), the
adjusted-R? has no interpretation. It is no longer the percent of the variation in total revenue that
is explained by the model. It should NOT be used as a device for selecting appropriate
explanatory variables; good economic theory should determine the model.
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Further Inference 1n the Multiple
Regression Model

CHAPTER OUTLINE

6.1 The F-test 6.5 Nonsample Information
6.2 Testing the Overall Significance of the Model 6.6 Model Specification
6.3 An Extended Model 6.6.1 Omitted variables
6.4 Testing Economic Hypothesis 6.6.2 Irrelevant variables
6.4.1 The significance of advertising 6.6.3 Choosing the model
6.4.2 Optimal level of advertising 6.7 Poor Data, Collinearity and Insignificance
6.1 F-TEST

The t-test is used to test a specific null hypothesis, such as a single test of significance. With the
multiple regression model, we might be interested in testing whether two or more explanatory
variables are jointly important to the model. The F-test allows for testing joint hypotheses, and is
based on a comparison of the sum of the squared errors from an unrestricted (full, or "original™)
model to the sum of squared errors from a model where the null hypothesis has been imposed. In
the Big Andy’s Burger Barn example, we estimated the model

Si =B, +B,P +B;A +¢

We can use the t-test to test the hypothesis H,:, =0against H, :p, # 0. Another way to test

this hypothesis is in terms of the models each hypothesis implies using an F-test. If the null
hypothesis is true, then the restricted model is formed as

Si =B, +B;A +&

The F-test compares the sums of squared errors from the restricted model and the unrestricted
model. A large difference will signal that the restrictions are false. The F-statistic we will use is

80
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_ (SSE, —SSE,)/J
~ SSE, /(N -K)

where SSEg and SSEy are the sum squared errors from the ANOVA tables of the restricted and
unrestricted models, respectively. J is the number of hypotheses or restrictions in the null
hypothesis. N is the sample size of the unrestricted model, and K is the number of parameters in
the unrestricted model. If the null hypothesis is true, this test statistic follows the F-distribution
with J numerator and N-K denominator degrees of freedom.

Unfortunately, Excel will not report these values automatically, so we will prepare a template
for the F-test. Let’s start with Insert>Worksheet in the Andy.xls file. Name the new worksheet
F Test. Type a heading such as "Hypothesis Testing - F-Test" in cell Al. Type Data Input
labels and Computed Values labels in column A. For appearances, left justify and set to bold
font the labels Data Input and Computed Values and right justify the sub-labels as shown
below.

A [ B
| 1 |Hypothesis Testing - F-Test
2|
| 3 |Data Input
EX J
| 5 | N
| B | E
7| SRE-RESTREICTED
| 8 | BRE-UNEESTREICTED
ER ALPHA
10|
| 11 |Computed Values
12| df-mimerator| =+B4
13| df-denominator =+B5-B6
14 F | =+({{E7-B&)B12)/(BE&/E13)
| 15 | Right Critical value =+FINV({B3,E12 B13)
16 | Decizsion =+IF{B14>B17 "Reject Mull',"Fail to Reject MNull")
|17 p-value =+FDIST(B14 B12,B13)

In column B, we will type the formulas necessary to calculate the F-statistic, the appropriate
decision, and the p-value associated with the calculated F-statistic. The commands are similar to
those used to create the t-test template in Chapter 5. To calculate the F-statistic for a particular
test, see the formula in cell B14. The functions FINV and FDIST are used to find the F-critical
value and the p-value associated with the calculated F-statistic, respectively. The syntax of these
functions are FINV(a,,df_n,df_d) and FDIST(F-stat, df_n,df_d).

To obtain the information needed in the Data Input section of the template, we need two
regressions; the unrestricted model and the restricted model. We will use the SSE's from the
ANOVA tables of each model. Now we can conduct the test for the restricted and unrestricted
models mentioned above.

Since we already have the unrestricted regression model for Andy.xls, we only need to run
the restricted model by going to Tools>Data Analysis>Regression. This time include only
advertisement (ADVERT) as the explanatory variables and save the worksheet as “Restricted
Model” and click OK.
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Regression g|
Input
_OK
Input ¥ Range: $a31:$4576

Inpuk x Range: I T

Labels [] Constant is Zero
[ Confidence Level: £
Cubput options Only MERT
O Cubput Range: 3 va.uahlg
(%) Mews Worksheet Ply:
) Mews Workbook,
Residuals
[ Residuals 1 residual Flots
[] standardized Residuals [ Line Fit Plaks

Marmal Probabilicy
[ narmal Probabilicy Plats

The regression output will be stored in the “Restricted Model” worksheet and will contain the
ANOVA table.

A | B [ C [ D | E |
1| SUMMARY QUTPUT
2
3 Regression Statistics
4 |Multiple R 0.222080315
| 5 |R Sguare 0.049319665
| B |Adjusted R Square 0.036296645
| 7 |Standard Error B.369R922
g |Observations 74
9
10 | ANOVA b
11 of N 55 Ms F
| 12 |Regression \153.5545312 153 6545312 3.7871145875
| 13 |Residual TIN 2061 827445 40572597872
14 |Total 74 3115481978
15
16 Coefficients | Standard Eror t Stat F-value
17 |l t 74179722493 179898273 41.23426071 2 56286E-52
18aDvE 1732615442 0.890323714) 1946051098 0.055495127

We can now transport the SSEs from the two models into our F-test template and test the
hypothesis. First, highlight the cell that contains the SSE from the restricted model. With cell C13
highlighted, choose Edit/Copy from the main Menu. A scrolling border appears around the cell.

E1 Microsoft Excel - andy.xls

@_1 File | Edit | Wew Inserk  Format  Jools  Daka  wind
B Lj Can't Undo Chr+Z % Exy @ - j
ﬁ 1) Repeat Close Chrl+y —_!
 DEE| | cut Chrl+

[Ca  copy o | c
;—SUM Sh| Office Cl}ﬁﬁoard...
3 (2| Paste Ctrl+y [T
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The value is now stored on the Excel's clipboard and be pasted as desired. Go to the “Restricted
Model” worksheet and Edit>Paste the SSE number from the restricted model under the Data
inputs at cell B7.

Microsoft Excel - andy. xls

@_] File | Edit | Wiew Insert Formak Tools Data  ‘Window Help  Adobe PDF
RN “) | Undo Column Width - Cer+Z EENE s AN - @ F - Ay Iﬂ A5 100%
o | Paste ity | .

E %l? Paste SJj;\c\‘iaI... —l

Clear 3 B

1_ H“-—l Delete...
i Delete Sheet
i Dat Move or Copy Sheet...
L Replace... Chrl+H
= : |
|6 | E
17| 2SE-RESTRICTED|
|8 | SEE-UNEESTRICTED
|9 ALTHA
|10 |
| 11 | Computed Values
112 | df-numerator =+B4
113 | df-denominator =+B5-B6
14] F =+((B7-B8)IB12)/(B8/B13)
115 | Right Critical value =+FINV({B9,E12,B13)
|16 | Decision =+IF(B14>B17 "Reject Mull","Fail to Reject Mull")
17 p-value =+FDIST(E14 B12,B13)

Now repeat this procedure for the unrestricted SSE from the original regression and paste it in cell
B8&. Fill in all the Data Input with appropriate information. Type "0.05" in cell B5 for testing at
the 5% level. The computed values should now appear, and the appropriate decision reported.

A | B |

1 |Hypothesis Testing - F-Test
| 2 |
| 3 |Data Input
EX J 1
5 | i) 75
6| K 3
7 SSE-RESTRICTED | 28961.827
| B | S3E-UMRESTRICTED 1718.043
9 | ATPHA 0.05
10|
11 |Computed Values
12| df-mumerator 1
13 dfidenominator 72
14 ¥
15 | Right Critical 3.973847
16 | Decision| Reject Mull

17 p-value 4 42E-10

Since the F-statistic > F-critical value, and the p-value < a, we reject the null hypothesis at the
5% level and conclude the price does have an effect on total revenue.
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6.2 TESTING THE OVERALL SIGNIFICANCE OF THE MODEL

In the application of the F-test, the model significance at the desired a-level is determined.
Consider a general linear model with K regressors with K—1 explanatory variables and K
unknown parameters.

Yi =B + X8, + Xi5Bs + o+ X By + €,

We test whether all of the coefficients on the K—1 explanatory variables are jointly equal to zero,
versus the alternative that at least one of coefficients is not zero. If the explanatory variables have
no effect on the average value of y, then each of the slopes will be zero, leading to the following
null and alternative hypothesis:

H,:B,=B,=B;=-...=B, =0
H, : At least one of the B, is nonzero for k=2,3,...K

We can use the template created for any F-test of interest including this one. For jointly testing
the significance of all of the explanatory variables in Andy’s Burger Barn, we test that all the 's
are zero except 1, the intercept. Note that when there are NO explanatory variables in the model
other than the intercept. The SSEg is equal to the SST from the unrestricted model. The results and
appropriate decision are

A [ B

| 1 |Hypothesis Testing - F-Test
[ 2 |

3 |Data Input L.
— This is the SST from the
| 4 | ) unrestricted model. 2
| 5 | N 75
| 6 | K 3
| 7 | 33E-RESTRICTED 3115481978
| & | S5E-UNEESTRICTED 1718.942985
| 9 | ALPHA s 0.05
10 _
11 | Computed Values
[ 12 | df-numerator A
13 | df-denominator
[ 14 | F 2924785993
15 | Right Critical value 31 449
[ 16 | Decision Feject Mull

17 p-value 5.04086E-10

We reject the null hypothesis and conclude that our model is significant at the 5% level; price or
advertising expenditures, or both have a significance effect on total revenue.

Alternatively, we can obtain the result to this F-test from Excel's ANOVA table. Notice that
the F and p-values associated with the F-Test are identical.
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|
10 [ ANOWA

1 df 55 s F Significance F
12 |Regression 2 13965380593 BO95.2694963 2924755993 5.04036E-10
_13 |Residual ?2| 1?18.942985_' 23.87420813

14 | Total 74 3115481975

If we compare the F-statistic to a critical value, or more easily, compare the p-value to a, we
reject the null hypothesis and conclude the model is statistically "important".

6.3 AN EXTENDED MODEL

The concept of diminishing marginal returns is an important one in economics, and you should
carefully consider this when modeling economic relationships. In our Sales for Andy’s Burger
Barn model, it seems reasonable that each and every dollar increase in advertising expenditures
would not lead to the same increase in sales; that is, the possibility of diminishing marginal
returns to advertising should be considered. To allow for this possibility, we include the
explanatory variable squared in the model. For simplicity we will rename SALES =S, PRICE =P
and ADVERT = A.

S, =B, +B,P +B,A +B,A’ +¢
To extend our model to include this additional regressor, open the worksheet Andy.xls. Label

column D "A2" and in cell D2, type the formula =C272. Copy this formula down the column.
Estimate the regression and save the output in the “Extended Model” worksheet.

Regression g|
Inpuk

--K

Input ¥ Range: $a51:4n476 k
Cancel
Input % Range: §0$1:40476 )
Hel

Labels [] Constant is Zero
[] confidence Level: %

Dukput options

() Oukput Range: £
(%) New Warksheet Ply: Extended Model

) News Workbook

Residuals

[ residuals [ Residual Plots

[] standardized Residuals [ Line Fit Plats

Tormal Probability
[ ormal Probability Ploks

We will get the following results:



86 Chapter 6

A | B | C | D | E | F | G |
1 [SUMMARY OUTPLT
2
3 Regression Statistics
_4 |Multiple R 0.7125906125
& |R Square 0.508235142
_B |Adjusted R Square 0.487 456346
_7 |Standard Error 4645283161
g |Observations 75
9|
10 [ANOWA,
11 df 55 Ms F Significance F
_12 |Regression 3 1883397427 8277991422 24455831530 5.59997E-11
13 |Residual 71 1532.084551 21.57865565
14 |Tatal 74 3115.451978
15
16 - Coefficients | Standawd Error t Stat P-value Lower 95% Upper 85%
7 |Intercept 105.7150398 6.79904566) 161374177 1.87037E-25 96.16212788 123.2759516
18 |PRICE 7640000543 1.045935915¢~-7 304442384 ™N\3.23648E-10 -9.725543479 -5.554457608
19 |ADVERT 1215123398 3.556164048| 3.416949784 0.0010516 5.060444353 19.2420236
20 |A2 -2.767962762  0.940624009%2 942657607 /0.00435267 1 -4.643513842 -0.892411653

Price P is now insignificant at the 5% level when squared advertising expenditures (A?) are
included in the model. The estimated coefficient on A” is negative as expected, and comparing the
p-value to (any level of) a we conclude that it is significantly different from zero. This suggests
that there are diminishing returns to advertising.

6.4 TESTING SOME ECONOMIC HYPOTHESES

Using this expanded model for total revenue, we will now examine several hypotheses of interest,
using both t-tests and F-tests.

6.4.1 The significance of advertising

To test for the significance of all levels of advertising requires a joint hypothesis test; we must
now consider the significance of both ; and B4 using Hy: ;3 = 0, B4 = 0 against the alternative
that at least one of the coefficients is not zero. We already have the unrestricted model in the
previous section, we will need to estimate the restricted model, where PRICE will be the only
explanatory variable. The ANOVA results are

A | B [ C | D [ E | F |
1 |SUMMARY OUTPLUT
2
3 Regression Statistics
4 [Multiple R 0626540555
| 5 |R Sqguare 0.391300951
| B |Adjusted R Square 0.332962645
| 7 |Standard Error 5.09685747
8 |Obsenvations N 75
9
10 | AMOWA, \
11 df N 55 s F Significance F
| 12 |Regression M1219.091184 1219.091184 4692791 1.597077E-09
| 13 |Residual 73 T8595.390793 ) 25 97795607
14 |Tatal 74 3115481975
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We can now transfer the SSEs from this restricted model and the model we labeled “Extended
Model” and use our template to test the significance of level of advertising at 5% significance
level.

A | B |
_ 1 |Hypothesis Testing - F-Test
2|
_3 |Data Input
4 I K=a" 2
5 | N \ 75
B | K 4
7 S8E-RESTRICTED 1896390793
8 | SEE-UNEESTRICTED 1532.084551
9 | ALPHA - 0.05
ol SSE from the
11 | Computed Values Extended Model
12 df-mumerator 2
13 df-denominator 71
14| F 6441356314
15 Right Critical value 3.125764237
16| Decision Reject Null
7 p-value 0.000514181

We reject the null hypothesis and conclude that advertising expenditures do significantly affect
total revenue.

6.4.2 Optimal level of advertising

We have already illustrated that the returns to advertising diminish. Then the optimal level of
advertising will occur at the point where the marginal cost is equal to the marginal benefit of
advertising. In other words, the optimum level is when the next dollar spent on advertising equals
only one more dollar of sales. Taking the derivative of expected SALES with respect to
Advertising expenditures A will give us the marginal benefit, which is

AE(S)
A Bs +2B,A=1
Solving for A gives A" = (1-hy) / 2b, , where b; and by are the least square estimates. We can then

substitute in our estimates for B; and B4 and solve for the optimal level of advertising

171215123398
2(-2.767962762)

which is $2014.
Suppose Andy wants to test if the optimal level of advertising is $1,900. If we substitute 1.9
(since advertising data is in $1000), leads to the following hypothesis:

Ho: B3 +2B4(1.9) = 1 against the alternative Ho: B3 + 2P4(1.9) = 1
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or equivalently
Hy: B; + 3.83,= 1 against the alternative Ho: B3 + 3.8, # 1
A t-test could be used to test this single hypothesis, using the test statistic,

¢ (b, +3.8b)-1
se(b, +3.8b,)

However, this test would require a calculation using the covariance between b; and b,. Since
Excel does not report the estimated covariance matrix for the LS estimators, we will instead use
the F-test. We can construct the restricted model by plug in the restriction
(B, +3.88,=1=PB,=1-3.88,) into our equation (S =B, +B,P+B,A+B,A’) such that the

restricted model will become:
S—A=B,+B,P+B,(A*-3.8A)+e
To run the restricted model, open Andy.xIs.

e Highlight column B. Insert a column by choosing Insert>Columns from the menu bar.
Label this new column S-A indicating Sales - Advertising.

e In the first empty cell of this column, type =A2-D2 and copy this formula down the
column. This column will represent our new dependent variable for the restricted model.

e Next, highlight column D and insert a new column. Label this A2-3.8A. In the first empty
cell, type =F2—(3.8*E2) and copy the formula down the column. This column will be our
new explanatory variable.

e Observe that we inserted the A2—-3.8A column next to the PRICE column since in Excel,
the columns used for the X-Range (the explanatory variables) must be in adjacent
columns. So. if you ever find that you want to run a regression and the explanatory
variables are not all in adjacent columns, simply highlight and move things around as
needed. Now we are ready to run the restricted model. Choose Tools>Data
Analysis>Regression. Use S-A as the Y-Range. Use PRICE and A2-3.8A as the X-
Range. Perform this regression as usual.

The regression summary output is
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A [ B [ c [ D [ E [ F \ G
|1 [SUmMARY OUTPLT
2
3 Regression Statistics
| 4 [Multiple R 0.693339057
| & |R Square 0.4507 19048
| B |Adjusted R Square 0.466294577
| 7 |Standard Error 464322439
g |Observations 75
19 |
10 [ANOWA,
11 df 55 Ms F Significance F
| 12 |Regression 2 1437.013271 716.5066356) 33.32663303 5.6515E-11
| 13 |Residual 72| 1852.286357 | 21.55883273
14 |Tatal 74 2989.299628
15
16 Coefficients | Standawd Error t Stat P-value Lower 95% Upper 85%
|17 [Intercept 110.3569599 | 6763803393 16.31610996 6.64193E-26) 96.87556446 123.8423554
| 18 |PRICE -7.6031042220 1.044730309 -7 277227713 3.39617E-10) -9.685835675 -5.520372768
19 |AZ-3.64 -2.876514915 0.93349559 | -3.081444569  0.002917717 -4.737404337 -1.015625493

This sum squared residual can now be used in the F-test template. Recall that we are testing Hy:
B3 + 2P4(1.9) =1 or that $1,900 is the optimal level of advertising or not. After copying SSEs for
the restricted and unrestricted model, set J=1 since we have only a single null hypothesis. The
results from this test are

A | B |
| 1 |Hypothesis Testing - F-Test
| 2 |
| 3 |Data Input
4| I 1
| 5 | N 75
|G | K 4
|7 SEE-RESTRICTED 1552.286357
| B | SEE-UNEESTRICTED 1532.084551
ER ALPHA 0.05
10|
|11 | Computed Values
| 12 | df-nurmerator 1
13| df-denominator 71
|14 ] F 0.9361939
| 15| Right Critical value 3.975810047
| 16| Decision Fail to Reject Null
|17 | p-value 0.335543031

We cannot reject the hypothesis that $1,900 is the optimal level of weekly advertising
expenditures at the 5% level and conclude that Andy’s advertising strategy is compatible with the
data.

We can also conduct a joint test of two of Big Andy’s suppositions. Let's say in addition to
proposing that the optimal level of monthly advertising expenditure is $1,900, Andy is assuming
that P = 6 will yield sales revenue of $80. The joint hypothesis will be:

H, :B, +3.88, =1 and B, + 6B, +1.98, +3.61B, =80

H, :at least one hypothesis is not true
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Since J = 2, we must perform an F-test. The restricted model is found by substituting both the
hypotheses in the null on the model and rearranging terms to form a model suitable for
estimation. It can be shown that the equation used to estimate the restricted model is

S—-A-80-1.9=B,(P-6)+B,(A*-3.8A+3.61)+¢e

To test this joint hypothesis in Excel, return to the worksheet containing the original data in
andy.xls.

Create three new columns labeled YSTAR, P—6, and ASTAR.

In the first empty cell of YSTAR, type the formula =B2-78.1, where cell B2 contains S-A.

In the first empty cell of P—6, type =C2-6, where cell C2 contains PRICE.

In the first empty cell of ASTAR, type =F2—(3.8*E2)+3.61, where cell F2 contains A2 and

E2 contains A.

e Highlight the three cells containing these new formulas. Place the cursor on the lower
right-hand corner of this selection until it turns into a cross-hatch. Left click, hold, and
drag down to row 79. Release and the values appear in the cells.

o Estimate a regression using YSTAR as the Y-Range. Use P-6, and ASTAR as the X-
Range.

e Use the SSE from this restricted model and SSE from the unrestricted model to conduct

the F-test, where K=4, J = 2.

6.5 NONSAMPLE INFORMATION

Often times we have information about a particular model that does not come directly from the
data. The information may come from past experience or from economic tenets. If correct the
nonsample information improves the precision with which you can estimate the remaining
parameters. To illustrate how we might go about incorporating the nonsample information,
consider a model designed to explain the demand for beer, we will use a model of demand for
beer (Q) based on its price (PB), the price of other liquor (PL), the price of all other remaining
goods and services (PR), and income (I). The nonsample information is that consumers do not
suffer from "money illusion"; that is, when all prices and income go up by the same proportion,
there is no change in quantity demanded.

We will use a log-log functional form for the model, and then impose restrictions that
incorporate our nonsample information. The unrestricted model is

In(Q,) =B, +B, In(PB) + B, ln(PL)+B4 ln(PR)JrB5 1n(|)+e

and will impose the restriction B, + 5 + B4 + fs = 0.
Rearranging this restriction, we have 4 = —, — ;3 — Ps, which can be substituted into the
unrestricted model. After some manipulation, the equation we will estimate is

ln(Qt) = Bl + Bz ln[E_:j + B3 11’1(%} + Bs ln[PI_tRI\J +e
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This equation incorporates the properties of logarithms, as well as the nonsample information.
We will get the Restricted Least Square Estimates by incorporating this restriction.

Open the data file beer.xIs. Note that the original data have associated labels already.

e Label the next 3 columns PB/PR, PL/PR, and I/PR.

e For PB/PR, in cell F2, type =B2/D2. Highlight cell F2, left-click on the lower right hand
corner, hold, and drag down the next two cells to right.

e Repeat the process for PL/PR, and I/PR.

e Label the next four columns for the logs of the data, labeling them InQ, InPB/PR,
INPL/PR, and Inl/PR. Calculate the natural log of Q in cell 12 by typing =LN(A2), where
cell A2 contains the first observation on Q.

e Calculate the natural log of PB/PR in cell J2 by typing =LN(F2). Highlight cell J2, left-
click on the lower right hand corner, hold, and drag across the next two cells to right.
This copies the formula for the other variables.

e Highlight the section of cells containing the log formulas (I2 to L2). Left-click on the
lower right hand corner of the selection, hold, and drag down the column to copy the
formulas down to row 31.

We can now run the regression by choosing Tools>Data Analysis>Regression to estimate the
regression model. Use InQ as the Y-Range and InPB/PR, InPL/PR, and Inl/PR as the X-Range.
Include labels by checking the Labels box. Store the regression output on a new worksheet
named “Nonsample Information”.

Regression g|
I 4
s
Input ¥ Range: $I51:$1%31
Input ¥ Range: F1$1:50431
Labels [] constant is Zeto =F
[ confidence Level: o

s

Cubput opkions

() Dukput Range: B
() Mew Worksheet Ply: Monsample Information|
() Mew Workbook

Residuals

[ residuals [] residual Plaks

[[] standardized Residuals [] Line Fit Plots

Mormal Probability
[ Marmal Probability Ploks

and click OK for the output.
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A | B [ [ [ o [ E [ F [ G |
| 1 [SUMMARY OUTPUT
2
3 Regression Statistics
| 4 |Multiple R 0.898859761
| 5 |R Square 0.80794857
| B |Adjusted R Square 07057039124
| 7 |Standard Errar 0.061675553
8 |Obsemnations 30
9 |
10 | ANOWA
11 df 55 Ms F Significance F
| 12 |Regression 3 04160705920 0.138890197 | 3646020438 1.83399E-09
| 13 |Residual 26 0.093900847 0003303879
14 |Total 29 0514971439
15
16 Coefficlents | Standard Ertor t Stat P-valug Lower 95% Upper 95%
| 17 [Intercept -4 797797376 3.71390504 | -1.291847079 0207775913 -12.43183844 2836243691
| 18 |[InFE/PR -1.2993564584 0165737623 -7.540021241 2.57799E-08 -1.640065044  -0.958707925
| 19 [InPL/PR 0.186515879 0.284383258 0656915852 0517008126 -0.397742275 0.771374032
20 [InlfPR 0.945528579  0.427046831 2214812313 0.035742225  0.068021255 1.823635904

Recall that our restriction was 4 = —B, — B3 — Bs. To get back the estimate of B4, we need one
more step. Unfortunately, while some statistical packages have options to automatically estimate
restricted least squares estimates, Excel does not.

In cell A21, type b4*= as a label. Next, in cell B21 type = -B18-B19-B20 to calculate by* =
—b,*—bs*—bs*, where cells B18, B19, and B20 contain the respective estimates. The restricted
least squares estimates are

A [ B C
1 SUMMARY OUTPLUT
2
3 Regression Stalistics
4 |Multiple R 0.8398359761
5 |R Sguare 0.80794887
B |Adjusted R Square 0.785789124
7 |Standard Error 0.061675593
8 |Observations 30
9
10 | AROW A
11 or S5
12 |Rearession 3 0416070592
13 |Residual 26 0098900547
14 | Total 29 05149714329
15
16 Coefficienis | Standard Errar
17 | Intercept -4 79T7TOTATE 3.71390504
18 |InPE/PR -1.299386454 0165737623
19 [ InPL/PR 0186315879 0.28438 g
20 |InVPR 0945828579 0.4218‘5%1
21
22 |ba*= 0166742026 ‘/

Recall that the log-log model specification provides estimates of elasticities, not marginal effects.
Substituting these results back into our specification, we have

In(Q) = —4.7978 —1.2994In(PB) + 0.1868In (PL) +0.1667In (PR) + 0.94581n (1)

From the results, we find that demand for beer is price elastic (b, < —1), does not seem to be
affected by the price of other liquor (B3 is not statistically significant), and might be an inferior
good (Bs < 1), although this would have to be formally tested.
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6.6 MODEL SPECIFICATION

Three essential features of model choice are (1) choice of functional form, (2) choice of
explanatory variables (regressors) to be included in the model, and (3) whether the multiple
regression model assumptions MR1-MR6, listed in Chapter 5, hold. In this section, we will
explore the first two.

6.6.1 Omitted variables

If you omit relevant variables from your model, then least squares estimator will be biased. To
introduce the omitted variable problem, we will consider a sample of married couples where both
husbands and wives work. Open edu_inc.xlIs and first regress family income (FAMINC) on both
husband’s (HE) and wife’s education (WE). The results are

A [ B [ C [ D [ E |
| 1 | SUMMARY OUTPUT
2
3 Regression Statistics
| 4 |Multiple R 0.401622273
| 5 |R Square 016130045
| B |Adjusted R Square 0.157353629
| 7 |Standard Errar 40497 55555
8 |Observations 428
9 |
10 | ANOWA
11 df 55 M= F
| 12 |Regression 2 1.34055E+11 5?02?3801% 40.865444017
| 13 |Residual 425 BHY033E+11 1640075
14 |Tatal 427 8.31087E+N
15
16 Coefficients | Standard Error t Stat Pyalue
|17 |Intercept -5533.630698 1122953295 0492774786 0.622426214
| 18 [HE 3131.509312  BO2.59079857 3.900209449 0.00011168
19 |WE 4522641199 1066.326646 4241328128 2.72835E-05

Omitting wife’s education and regressing family income (FAMINC) on only husband’s (HE)
yields:

A | B | c | D | E
| 1 [SUMMARY QUTPUT
2
| 3 |Regression Statistics
| 4 [Multiple R 0.354654413
| 5 |R Square 0.125801033
| B |Adjusted R Square 0123748923
| 7 |Standard Errar 41297 49176
| G |Observations 428
9
10 [ANOWA
11 df 55 Mz F
| 12 |Regression 1 1.04552E+11 1.04552E+11  B1.3032526
| 13 |Residual 426 V.2B536E+11] 1705482826
14 |Total 427 8.31087E+11
15
16 Coefficients | Standard Error t Stat FP-value
| 17 [Intercept 26191.26868 8541.108357  3.06864595305 0.002303503
18 [HE 5155453577 BA8.4573486 7 529635366 3.52051E-14

And including WE and number of preschool age children (KL6) yields:
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A [ B [ C [ ] [ E
| 1 [SUMMARY OUTPUT
2
ERegression Statistics
| 4 [Multiple R 0.420919613
| 5 |R Square 0177173321
| B |Adjusted R Sguare 0171351434
| 7 |Standard Error 40160.0514
| 8 |[Observations 428
9
10 |ANOWA
1 df 55 s F
| 12 |Regression 3 1 AT2ATEHN AD082167249) 30.43228458
| 13 |Residual 424 BEIBME+HIT 1612832135
14 |Total 427 B.310B7E+11
15
16 Coefficients | Standard Error t Stat F-valug
| 17 [Intercept -77595.331329 11162.93447 | -0.694739454 | 0.457529095
| 18 |HE 3211625676 796.7026365 ) 4.031021775 6.58407E-05
| 19 [WE 4776.907 459 1061.16372 | 4.501574447 | 8.72703E-06
20 |KLE -14310.92032 5003928369 | -2.859957056  0.004446555

6.6.2 Irrelevant variables

Including irrelevant variables in your model impairs the precision of least squares estimator.
Least squares will be unbiased, but standard errors of the coefficients will be larger than
necessary. In this example, two extraneous variables (XTRA_X5 and XTRA_X6) are added to the
model. The results are:

A | B | C | D | E

1 |SUMMARY OUTPUT

2

3 Regression Statistics
| 4 [Multiple R 0.421659186
| 5 |R Sguare 0177796469
| 6 |Adjusted R Square 0.168054721
| 7 |Standard Error 40239.56895

8 |Observations 428
9|

10 |ANOWA

il df 55 s F
| 12 |Regression 5 1.477B4E+11| 20552878521 18.2509822
| 13 |Residual 422 B.AIFLESE+1 1619248663

14 |Total 427 8.31087E+11

15

16 Coeflicients | Standard Error t Stat F-value
| 17 [Intercept -7E58.615275 1118541057 -0.675153022  0.4999453
|18 |HE 3339791791 1250.038195 2671749657 0.007837757
19 |WE SBEB.E78132  2278.066794 2A7B1BEDET 0.010329332
|20 |KLe -14200.18311 5043.719575 -2.8154185839 0.005099603
| 21 [XTRA 5 §85.8441205 2242490245 0.396364766 0.692036295
22 [KTRA_¥B -1067. 186625 1981.684591 -0.535524583  0.590498671

Notice how much larger the estimated standard errors became compared to the last regression in
the previous section.

6.6.3 Choosing the model

Choosing an appropriate functional form for the model is very important. Although theoretical
considerations should be the primary guide to functional form selection, you can also use the
RESET (Regression Specification Error Test) test as a check to determine if you are making an
obvious error in specifying your function or not. RESET is basically an F-test where the
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restricted model is the "original" model and the unrestricted model is a polynomial approximation
including the predicted V;'s squared, cubed, etc., as explanatory variables. The general foundation
of the test is that if the model is improved by artificially including powers of the predicted values,
then the original model must not have been adequate.

RESET is a simple test with the null hypothesis is that your functional form is correct, the
alternative is that it is not. We will talk about two variants of the RESET test; RESET(1) and

RESET(2). The first adds only §° to the model and tests its significance using the t-test. The

second adds both §* and ¥’ and tests their joint significance.

Estimate the regression assuming the functional form is correct and obtain the coefficient
estimates, calculate the predicted values. We will illustrate these tests using the family income
regression where the family income is the dependent variables and the education of the husband
and wife are the explanatory variables.

FAMINC =B, +B,HE +B.WE +e

The unrestricted model includes the squares of the predicted y for RESET(1) and both squares
and cubes of the predicted y for RESET(2).

RESET (1) Y, =B, +B,HE +BWE, +v,9; +e
RESET(2) Yo =B, +B,HE +BWE +v,9 +7,9, +e

Open edu_inc.xls. First estimate the “Restricted Model” where FAMINC is the Y-Range, and
HE and WE are the X-Range. Place the output on a new worksheet called “Restricted”. Check
the Residuals box. This is needed to obtain the predicted y-values, then click OK.

Regression E|
et ook |
oK
Input ¥ Range: A1 §adara ——
Input % Range: $B$1:$CH429
Hel
Labels [ onstant is Zero
[ confidence Level: %

Oukpuk opkions

O Qutput R.ange: EHA
() Mew Worksheet Bly: Restricted Model

() Mew Workbook,

Residuals

Residuals [ residual Flats

[] standardized Residuals [Line Fit Plots

Marmal Probability
[] Mormal Probability Plots

From the regression output, we will use the SSE to be used for the F-test. Below the regular
regression output, you will observe the residual output. The residual option in the regression
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dialog box provides the predicted values and the errors associated with each observation. Since
we will use the squares and cubes of the predicted column, we need to copy and paste this column
next to our data. Highlight cells B25 to B453, which contain the predicted FAMINC. Choose
Edit>Copy from the menu bar. Move to the worksheet containing the original data. Go to cell G1
and Edit>Paste. Your data now looks like:

Microsoft Excel - edu_inc.xls

Il—il File Edit Miew Insert  Format  Tools Data  Window Help  Adobe PDF
HRNEN" NEEENNE NN SRR A R AL SRS 1N 1N
LRI R H : & snagle &' | window - H
A7 v %
A | B | ¢ | o | E | F | £

| 1 | FAMINC HE WE KL6G XTRA_X5 XTRA_X6 Predicted FAMINC
| 2 | B1B51.8 12 12 1 11.01355 23.44493 BE316.17544
| 3 | 52404 9 12 0 937219 2255274 TES21 6475
| 4 | 795312 12 12 1 124262 23.16E03 BE316.17544
| 5 | 27584 10 12 0 10.25664 23.01776 B0053. 15681
B 103194 12 14 1 117983 2561441 95361.45784

Now create two new columns, YHAT2 and YHAT3 in columns H and I. However, before we
create the square and the cube of the predicted values, we will need to make an adjustment for the
RESET test to work. We will first create a column for the adjustment; in cell H1 type adjusted
yhat. In cell H2, type =G2/10,000 and copy it down the entire column.

FAMINC HE WE KLG6 | XTRA_X5 XTRA_XG Predicted FAMINC adjusted yhat
B1651.8 12 12 1 11.01355 ) 23.44453 96316.17544  B.631617544
52404 a 12 0 8372198 2289274 7921 6475 7.BYA1B475
79531.2 12 12 1 12,4262 2316605 g96316.17544  8.631617544
27584 10 12 0 10.25664 | 23.01776 g0053.15661  5.005315681
103194 12 14 10 11.7983 2561441 95361.45784 9536145784
73691.1 11 12 0 11.4462 2416109 d3184 66613 8.315466613
79954 56 12 16 0 11.695585 25.28513 1044067402 10.44067402
71442 ] 12 0 5067864 165.52149 7379013519 7.379013819
771309 4 12 0 4.2542583 17.90169 61264.10094 B.1264100594
77206.5 12 12 0 10.87064 | 21.94787 g6316.17544 B.631617544
122094 12 12 0 1367145 2539453 g6316.17544  8.631617544
108456 14 11 0 10165985 2211444 g8056.552661  8.805655286

Now, using the adjusted yhat, we will create two new cells. Insert>Column two new columns
next to variable WE and label tem yhat2 and yhat3, respectively. Notice that the adjusted yhat cell
has moved to column J. In cell D2, type =J2"2. In cell E2, type =J2/3.

A | B | © | D | E | F | 6 | H | [ | J |
FAMINC HE WE yhat2 yhat3 KL6  XTRA_X5 XTRA_X6 Predicted FAMINC adjusted yhat
61651.8 12 12|=122 =+[243 1 11.01355 23.44493 G96316.17544 8.631617544
82404 9 12| 87.8379454 | 823.2339135 0 937219 2259274 76921.6475  7.B9216475
79531.2 12 12 154.410422 | 1918.734626 1 12,4262 23.16608 86316.17544 | B8.631617544
27594 10 12 105.198644 | 1078.98451 0 10.25664 23.01776 80053.15681 | 8.005315681
103124 12 14 132.199765  1642.31589 1 11.7883 2561441 95361.45784 | 9.536145784
73691.1 11 12 131.015445 | 1499628766 0 11.4462 24.16109 83184.66613  8.313466613
79954 .56 12 16| 136.725246 1599.950362 0 11.68595 26.28513 104406.7402  10.44067 402
71442 g 12| 256832455 130.15915954 0 5067864 16.52148 7379013819 7379013819
771309 4 12/ 18.092008%  76.998487 0 4.254293 17.90168 61264.10094 |  6.126410094
772065 12 12) 118.170745 | 1284591314 0 10.87064 21.94787 86316.17544| 8631617544

Highlight both cells D2 and E2. Copy the formulas down to row 429.
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Now we have all the explanatory variables ready. Recall that when you perform a regression
in Excel, all of the explanatory variables must be in adjacent cells, that is why we inserted the
new columns next to the other explanatory variables.

For RESET(1), we will only use YHAT2.

Inpuk
Input ¥ Range:

Input » Range:

Labels
[ confidence Level:

Cutput options
O Oukput Range:
(%) Mew Worksheet Ply:
() Mew Workbook,
Residuals

[ residuals
[] standardized Residuals

Marmal Probability
["] Mormal Probahbility Plots

$EE14D%420

|:| Constant is Zero

\::In' k=

!

Reset 1 Unrestricked

] residual Flots
[ Line Fit Plots

We can now conduct the RESET(1). Since we are testing the significance of yhat2, we can either
do a t-test or and F-test using the SSE from the unrestricted model (above) and the restricted

model.
Cocfficients | Standard Error b Stat P-value
Intercept 50147.69156 )  43865.10724  1.527019556 W.068399627
HE 2013988586 2669.95933058 -0.754307505 (3451053279
WWE -3450 936855 4106.983592 -0.85000 5304723
EhatZ [ 9342866496 4R2 52434620 201997291 0.044014621

The t-statistic from the regression output of RESET(1) Unrestricted is 2.02 and the p-value is
0.044. Since t-stat > t-critical and p-value< o, we reject the null hypothesis; we have evidence to
support model misspecification. Also, since in a single hypotheses test, F = t*, F= 4.08.

For RESET(2), go to Tools>Data Analysis>Regression.
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Regression E]
Input
QK
Input ¥ Range: $AFLAG429 k_
Input & Range: $E$1 34429
Hel
Labels [ constant is Zera
[] corfidence Level: £
Cutput opkions
B

O Cutpuk Range:
(%) New Warkshest Ply:

) New Waorkbook
Residuals

[ residuals
[] standardized Residuals

Mormal Probability
[] normal Probability Ploks

Reset 2 Unrestricted

[ Residual Plats
[] Line Fit Plots

This time use FAMINC in the Y-Range, and HE, WE, YHAT2 and YHATS3 as the X-Range. Place
the output on a new worksheet called “Reset 2 Unrestricted”.

AR
cif 55 Ms F

Regrassion 41 1 44217EHT 36054151749 22 20345943
Residual 423 1623807852
Tatal 427 8.31087E+11

Coefficients | Standard Ervor t Stat P-value
Intercept 279165 3441 1421301137 1.964153386  0.050166679
HE -22010.895345 13844 86128 -1.5809824413 0112621469
WWE -3547 04547 19497 27245 -1 518023524 0106402912
hats 8521538202 5175350858 1.646552414 0100390716
i hatd -291 9788247 1983673197 -1.471909915 014178879

This time we are testing the joint significance of YHAT2 and YHATS3. In other words, we test the
hypotheses Hy: y; = v, = 0 versus the alternative that y; # 0, y, # 0, or both do not equal zero. For
the joint test, open the template labeled “F-Test”.

Fill in the Data Input values for the F-test. J =2, T =428, and K=4.
Next, we will copy the SSEs from the restricted and unrestricted models and paste it into

the template. The SSE from the unrestricted model is cell C13 of the output above. So
right-click on cell C13 from the regression output.

Paste.

output and paste it in cell C7.

Choose Copy, place the cursor in cell B§ of the F-test template, right click and choose

Next, return to the “Restricted Model” regression output and copy the SSE from the

Below are the results of the F-test; we reject the null hypotheses and conclude that the
specification is inadequate.
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Hypothesis Testing - F-Test
Data Input
I 2
o) 423
K 4
SEE-EEETEICTED B 9T033E+11
SeE-TMEESTEICTED 5.E863T1E+T1
ATPHA 0.05
Computed Values
df-rmerator 2
df-denominator 424
F 3136414778
Fight Critical value 301695839
Decision
p-value 0.044447774

Beware that the RESET results are different than those in your book. Although these results are
valid, EXCEL will not be able to provide you with the same RESET values despite the
adjustment we made above.

6.7 POOR DATA, COLLINEARITY AND INSIGNIFICANCE

When two or more explanatory variables are correlated, or collinear, the multiple regression
model is unable to isolate individual affects on the dependent variable. Collinearity can cause
high standard errors for the least squares estimators, resulting in t-tests that suggest the
parameters are not significantly different from zero. Some strange results can occur, and we
should be careful in interpreting our results when collinearity is present.

When there are one or more exact linear relationships between any of the explanatory
variables, the least squares estimation process does not work. Many statistical packages will not
even provide results, and will issue some type of error message. Excel does produce results,
without any warnings or error messages but issues zeros for the standard errors.

More commonly, we face situations where the collinearity is not perfect, but can be
"harmful". When linear relationships between our explanatory variables are strong enough, high
standard errors, low t-statistics, and unstable estimates result. We should, therefore, look to see if
our results are being affected by collinearity. There are several things to look at when trying to
determine the existence of this type of problem, correlation and something we call an auxiliary
regression.

To explore the ways of identifying collinearity, we will use cars.xls. Open the data set and
first estimate the model of miles per gallon (MPG) as a function of the number of cylinders (CYL)
in the engine.
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Regression

Inpuk
Input ¥ Range:

Input ¥ Range:

Labels
[ Confidence Level:

Cutpuk opkions
O Qutput Range:
(%) Mew Worksheet Ply:
) Mew Workbook,

Residuals

[ Residuals
[] standardized Residuals

Marmal Probability
] Marmal Probability Plots

$A51:504393
$B41:464393

[] Canstant is Zera

o

i

simple with Yl

[ residual Plats
[ Line Fit Plots

(X
.

The output from this simple regression indicates a strong negative linear relationship between the

MGP and CYL.

A B | C | D |

1 [SUMMARY OUTPUT

2

3 Hegression Statistics 3
|4 |Multiple R D.???EWEDQ/
| & |R Square 0.60455595
| B |Adjusted R Square 0.603675372
| 7 |Standard Errar 4913589267

8 |Obserations 392
ER

10 | AR A,

1Al of S5 s
| 12 |Regression 1 14403.08285 1440305286
| 13 |Residual /0 9415910199 2414335048
14 |Tatal 391 23515.99305

15

16 Coefficients | Standard Error t Stat
17 |Intercept 4289155052 0.834855841 A040121
18 |CYL .3.558078341 | 0.145675537

Now add the car’s engine displacement in cubic inches (ENG) and weight (WGT) to the model.

Regression
Inpuk
Input ¥ Range:

Input % Range:

Lahels
[] Confidence Level:

Cutput options
O Qukpuk Range:
(3) Mew Warkshest Ply:
) Mew Woarkbook
Residuals

[ residuals
[ standardized Residuals

Mormal Probabilicy
[] Mormal Probability Plats

$A51:50$353
$B%1:4D$393

D Constant is Zero
%o

£

malkiple w O] EMG WiET

[ residual Plats
[ Lire Fit Flots

X
o
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The output now shows a very different relationship between the MPG and CYL.

A28 - fx
A | B | c | D | E

L1 SUMMARY OUTPUT

2

3 Regression Statistics
| 4 |Multiple R 0836237125
| 5 |R Square 0699292534
| B |Adjusted R Square 0.696967 476
| 7 |Standard Error 4.296530924

8 |Observations 392
EN

10 |ANOYA,

11 df 55 M5 F
| 12 |Regression 3 16656444 5552148001 300.7635141
| 13 |Residual 385 7162549057 1546017795 ’

14 |Total 391 23515.99306 /

15 4

16 Coefficients | Standard Error t Stat J P-value
|17 |Intercept 44.37096115  1.480685053 29.9685084%6.31995103
|18 |CYL 0267796747 0.413067325 -0.648312588) 0.517166276
|19 |ENG 101267396 0.003250068 -1.536224886 0.125238265
20 [WGET -0.005707554  0.000713918 -7.995142543 1.50112E-14

The value of the coefficient of CYL is much smaller, the standard error much larger and the
variable is not significant anymore. We can also test other hypothesis such as the significance of
ENG and joint significance of CYL and ENG. We will observe that CYL and ENG are individually
not significant at 5% level but jointly they are. Joint test can be conducted by estimating the
restricted model where both of there parameters are zero and using the F-test template as
described in the previous section. This can happen when we can not isolate their individual
impact. The independent variables CYL, ENG and WGT are highly correlated with each other and
therefore highly collinear. A simple way the check the strength of possible linearity is to look at
the correlation matrix. Correlation measures the direction and strength of a linear relationship
between two variables. Choose Tools>Data Analysis>Correlation and indicate the data range in
the dialog box.

Correlation g|
Inpuk
(0] 4
Input Range: $B$1:904393 [T o |
Cancel
Grouped By: (%) Columns
Oons
Labels in First R k

Okpuk opkions

() Oukput Range: 3
() Mew Worksheet Ply: Cotrelations among Xs
) Mew Workbook

The correlation matrix is
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A | B | ¢ | D
1 ENG CYL WGT
2 [ENG 1
3 |CYL 0.950823 1
4 WGT 0932994 0.897527 1

These results show the high degree of linearity between all of the variables. However, correlation
only measures the pair-wise linearity between variables. A more complex linear relationship
between several variables at a time is not detected by correlation.

To detect more complex linear relationships, we will use the coefficient of determination, R?,
introduced in chapter six. Recall that R? is interpreted as the percent of the total variation in the
dependent variable that is explained by the model, or the explanatory variables. This
interpretation is very helpful now.

An auxiliary regression is a multiple regression, but one of the original explanatory variables
is used as the dependent variable. We are not concerned with any of the regression output except
the R?, because it measures how much of the variation in that one explanatory variable is
explained, or being determined by, the other explanatory variables. This is, then, a measure of
collinearity.

We can estimate the auxiliary regressions where each explanatory variable is regressed on all
the others.

Regressing ENG on CYL and WGT

A B | C | D | E
1 |SUMMARY QUTPUT
2
8 Regression Statistics
| 4 |Multiple R 0.957809154
| & |R Square 0.936654555
| B |Adiusted R Square 0.936328874
| 7 |Standard Error 26.40496601
8 |Observations 392
19|
10 |AMOWA
11 df 55 M= F
| 12 |Regression 2 4010374266 20051587.133 2575.965578
| 13 |Residual 388 IF1219.4474 0 BEF 2227089
14 |Total 391 4251593714
15
16 Coeflicients | Standard Error t Stat Fvalue
| 17 |Intercept S161.8981681 1 4.870943525 3112295746 1.2638E-107
|18 |CYL 35.78543715 177531476 2015892502 Z.1609E-6Z
19 WGET 0.050436195  0.003565214 141467502 5.99863E-37

Regressing CYL on WGT and ENG
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A B | z | n] E

| 1 |SUMMARY QUTPUT

2

3 Regression Statistics
| 4 [Multiple R 0.951263555
| & |R Square 0.904902357
| B |Adjusted R Square 0.904413423
| 7 |Standard Errar 0.527378352

8 |Obserations 392
| 9 |

10 ANDA

1 of 55 Ms F
| 12 |Regression 2 1029493563 514.7497515 15850.766256
| 13 |Residual 388 1081917635 0273127927

14 |Total 391 11578957

15

16 Coefficients | Standard Eror t Stat FPvalue
| 17 |Intercept 2218643749 014287129 1550797046 1.4281E-42
| 18 |[EMG 0.014276314  0.000703133 2015892502 21G09E-B2
19 WET 0.000161476  8.72468E-05 1.850755374 0.064356551

Regressing WGT on ENG and CYL
A B [ [ [ D [ E

|1 [SUMMARY OUTPUT

2

3 Regression Statistics

| 4 [Multiple R 0.933600095/

| 5 |R Square 0.571609135

| B |Adjusted R Square 0.8705459031

| 7 |Standard Error 3051365283

8 |[Dbservations 392

a

10 | ANOWA

11 o o) M= F

| 12 |Regression 2 2488813922 1229408561 1320405322
| 13 |Residual 389 36219122.058 23108.30021

14 |Tatal 391 2821005212

13

16 Coefficients | Standard Eror t Stat P-value
| 17 |Intercept 1372356542 78.84466956 17.40583054 1.36052E-50
| 18 |CYL 5405657362 2920742853 1.850725374  0.064956351
19 |ENG 5735335693 0.47510a054  14.1467502 5 .99865E-37

Check the R? from each of these regressions. Any above 80% indicates strong collinearity which
may adversely affect the precision with which you can estimate the parameters of the model
containing all of these correlated variables. In our example, the R?s are approximately 94%, 90%
and 87% respectively which are all well above the 80% threshold. Therefore, it is not surprising
that it is difficult to isolate the individual contributions of displacement and number of cylinders
to a car’s gas mileage.
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Nonlinear Relationships

CHAPTER OUTLINE

7.1 Nonlinear Relationships 7.3 Applying Dummy Variables
7.1.1 Summarize data and estimate regression 7.3.1 Interactions between qualitative factors
7.1.2 Calculating a marginal effect 7.3.2 Adding regional dummy variables

7.2 Dummy Variables 7.3.3 Testing the equivalence of two
7.2.1 Creating dummy variables regressions
7.2.2 Estimating a dummy variable regression 7.4 Interactions Between Continuous Variables
7.2.3 Testing the significance of the dummy 7.5 Dummy Variables in Log-linear Models

variables

7.2.4 Further calculations

7.1 NONLINEAR RELATIONSHIPS

The least squares estimation procedure we have been using is based on the assumption that the
model is linear in the parameters, though not necessarily linear in the variables. We saw an
example of nonlinearity in variable in Chapter 6 in the sales model with diminishing marginal
returns to advertising expenditures. To allow for this effect, we included the square of advertising
expenditures as another explanatory variable. By transforming the advertisement variable, we
captured the diminishing marginal returns without violating the assumptions of the linear
regression model.

Models that have parameters that are nonlinear require nonlinear least squares estimation.
Although Excel is a powerful spreadsheet, it is not designed to be a complete econometric
software package, and consequently it does not have the capabilities to estimate models that are
nonlinear in the parameters. If you encounter such a problem, use econometric software such as
Stata, EViews, Shazam, or SAS.

7.1.1 Summarize data and estimate regression

The following example will illustrate the flexibility that the polynomial terms can add to the
linear regression model. We will use the wage equation:

104
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WAGE =, +B,EDUC + B,EXPER + B,EXPER? + ¢

Get the summary statistics, Tools>Data Analysis>Descriptive Statistics.

Descriptive Statistics

Input

Input Range:

Grouped By: (&) Columns Cancel
Ot

Lahels in First Raow

Cutpuk opkions

O Qutput Range:

(%) Mew Waorksheet Phy:

) Mew Workbook

Summary skatistics

[] Confidence Level For Mean: o

[ Kth Largest:

[] kth Smallest:

This will provide the summary statistics for WAGE, EDUC, EXPER and EXPER2 variables.

A | B | c | D | E | F [ G | H |
1 wange educ Py . axpers
2
| 3 |Mean 10.21302002 Mean 13.285 Mean 18.78 Mean 480 676
| 4 |Standard Errar 0.197536118 Standard Errar 0.073050412 | Standard Errar 0.35 557 Standard Errar 15.45353006
| 5 |Median 8.73 Median 13 Median 18 Median 324
| 6 [Mode 4.42 Mode 12 Mode 16 Mode 256
| 7 |Standard Deviation | 5.246640531 Standard Deviation | 2 465170763 Standard Deviation | 11.3188213 Standard Deviation | 4888527522
| 8 |[Sample Wariance | 39.02051752 Sample Yariance 5031366867 Sample Wariance 128. 1157157 | Sarmple Wariance | 2390053454
| 8 |Kurtesis 7.051484345 Kurtosis 1.638729824 Kurtosis -0.6519580158 Kurtosis 1.375091453
| 10 |Skewness 1.986153012 Skewness -0.211964003 Skewness 0.333047432 Skewness 1.331552256
| 11 |Range 58.159999 Range 17 Range 52 Range 2704
|12 [Minimum 2.03 Minirmurn 1 Minimum 0 Minimurm 1]
|13 [Maximurm B0.185999 Maximum 18| Maximum 52| Maxirmurm 2704
14 | Sum 10213.02002 | Sum 13285 Sum 18780|Sum 480675
15 |Count 1000 Count 1000 Count 1000 Count 1000

To estimate the wage equation, open cps_small.xls. Highlight column D and insert a column
using Insert>Column. Name the new column “EXPER2” and enter the formula =C272 and copy

it down.

E1 Microsoft Excel - cps_small. xls

@_1 File Edit Yew Insert Format Tools Data

NS RO G PR ke 9

Window Help  Adobe PDF

@ = -4l % o - @)

'!

T W G onaar B
D2 - A

Window| ',_/
LD N

fe =022
A | B | ¢ E | F | & | H [ 1 |
1| wage educ exper emale black white  midwest  south west
2| 203 13 1 1] 1 1] 1 a
3 | 207 12 1] 1] 1 1 0 a
4 212 12 3 1] 1] 1 1] 1 a
| & | 254 16 20 1 a 1 a 1 a
B | 268 12 24 1 a 1 a 1 a
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Estimate the model using Tools>Data Analysis>Regression.

Regression E]
Input
Ok
Input ¥ Range: $at1: 541001 q
Input % Range: $B41:$041001
Hel
Labels [ Constart is Zero
[ confidence Level: %y
Cutput options
-

Q Qutput Range:

(%) New Workshest Ply: Palynomial

() Mews Workbook

Residuals

[ residuals [ Residual Plats
[] standardized Residuals [ Line Fit Plats

Marrnal Probabilicy
[] mormal Probability Plats

Estimate a regression and use WAGE as the Y-Range and EDUC, EXPER, EXPER2 as the X-
Range. Name the output worksheet “Polynomial”.

A B | C [ 5 [ E | F | G |

1 [SUMMARY OUTPUT

2

3 Regression Statistics
_4 |Multiple R 0.520513263
_5 |R Sguare 0.270934057
_ B |Adjusted R Square 0.268735075
_ 7 |Standard Error 5.341743073

§ |Observations 1000

g
10 |ANOWA

11 df 55 Ms F Significance F
_12 [Regression 3 105E1.41522) 352047174 1233771891 5.90228E-68
_13 |Residual 996 28420.05218| 25.53421906

14 |Tatal 999 38981.4574

15

16 Coefficients | Standard Error t Stat P-value Lower 95% Upper 95%
17 |Intercept -9.817697044  1.054963555 -9.30619546 ) 8.19064E-200 -11.88790328 -7.747450804
18 |educ 1.210071534 007023758 17.22821381) 2.03903E-58  1.072240787 1.347902581
18 exper 0.340945174 ) 0.0581431361 ) 6629207719 562163611 0240022316 0441875432

20 |exper? -0.005093062 0.001197941 ) -4 281512714 232293E05  -0.00744354 -0.002742254

7.1.2 Calculating a marginal effect

Since the wage equation is nonlinear in variable “EXPER”, the marginal effect (slope) must be
calculated as follows:

MAGE) =B, +B,2EXPER
OEXPER
The marginal effect needs to be evaluated at a specific point, such as the median. You can get the
median from the summary statistics. The median for the EXPER variable is 18 from the output
above. The marginal effect at the median is:
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OE (WAGE)
GEXPER

=0.340949174 —0.005093062*2*18 = 0.157598937

7.2 DUMMY VARIABLES

Dummy variables are binary (or indicator) variables that indicate the presence or absence of a
characteristic. In this section, we will use dummy variables in a real estate example. Open
utown.xls.

7.2.1 Creating dummy variables

In many examples in POE dummy variables have already been created and are ready to use. An
important issue in the real estate industry is how to accurately predict the price of a house, based
on several of its characteristics, including the ever-important "location, location, location™.
Economists commonly use a "hedonic" model of pricing based on several characteristics such as
size, location, number of bedrooms, age, etc. Using a dummy variable, Dy, which is equal to 1 if
the house is in a desirable neighborhood and is equal to O if the house is not in a desirable
neighborhood captures the qualitative factor of location. Including this variable in the regression
model will allow the intercept to be different for houses in desirable areas compared to the
intercept for houses not in desirable areas. This variable has been stored as variable UTOWN.

We can also allow for different slopes for houses in different areas by including an
interaction variable, the product of the dummy variable and one of the continuous explanatory
variables.

7.2.2 Estimating a dummy variable regression

Estimating a dummy variables model is no different than estimating any other regression model.
We will use the interaction slope dummy variable between the size of the house sqft and the
dummy variable for university town, utown. This will allow for the extra square footage of living
space in a good neighborhood affecting the price differently than a house not in a good
neighborhood. The full model we will estimate is

PRICE =, + 5,UTOWN +B,SQFT +y(SQFT x UTOWN)

+B,AGE +8,POOL +8,FPLACE +e

where PRICE = the price of the house, in dollars
UTOWN = 1 for houses near the university (desirable), 0 otherwise
SQFT = square feet of living area
AGE = age of house in years
POOL =1 if house has a pool, 0 otherwise
FPLACE = 1 if house has a fireplace, 0 otherwise.

Note that this model contains two continuous explanatory variables (SQFT and AGE), and three
dummy variables, capturing the qualitative characteristics of location; presence of a pool, and a
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fireplace in addition to the utown variable. Let's now estimate this model. Open utown.xIs. Label
column G sqgftXutown. In cell G2 create the interaction variable by typing =B2*D2.

E3 Microsoft Excel - utown.xls

@_] File Edit ‘iew Insert Format Tools Data  indow Help  Adobe PDF

J _H :4'| Jil?ﬁil* 53 {8 - /!l' "'l:—:-zv_:f

@ = = l @-Snaglt | window - !
MORMINY ~ X J & =B27D2
A | B | ¢ | b | E | F [ &
| 1| price sqft age utown pool fplace  sqftX{utown
I3 [ 5 N S SR S 757
| 3| 185328 20.03 ] 0 0 1
4 | 245422 7T E 0 1] 0
| 5| 154E3 2017 1 0 1] 0
Copy this formula down the column to row 1001.
=B2*02
¢c | o | E | F | 6 |
LUtowin Pool Fplace sqftxtown
& ] ] 1 0
5 ] ] 1
& ] ] 0
1 0 0 0 L
0 0 0 1

Zeros appear in column G down to row 482. Then sqft values appear after that. This is because
the variable UTOWN is equal to zero through row 482, then one after that.

Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-
Range and columns B through G as the X-Range. Don’t forget the include labels by checking the
Labels box. Save to a new worksheet called Dummy and Interaction.

i .

Input ¥ Range: $.°.$1 $.ﬁ.$1001
Input ¥ Range: $B$1 $GHLO01

Hell
Labels [] Constant is Zero
[] confidence Level: | %%

Qukpuk aptions

O Cukput Range: | =k;=
(3) New Worksheet Ply: iDummy and Interaction |
) New YWorkbook

Residuals

[ residuals [] Residual Plots

[] Standardized Residuals [ Line Fit Plots

Tormal Probability
[ Mormal Probability Plots

The parameter estimates and corresponding t-stats and p-values are
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16 Coefficients | Standard Error t Stat P-value

17 |Intercept 2448993329 BAMTM216 0 3956893501 §.13332E-05
18 |=oft FREI27EE12 02451764580 31.04774691 1.8674E-148
19 |age -0.1900863588 0 0.051204606 -3.7122903812 0.000216812
20 |utowen 27 45295601 8.422658204 3208446555 0.001154208
21 |pool 4 377164078 119661609 365772104 0.000267336
22 |fplace 164917557 0971956791 1.6967583113 0.090055792
23 |sgftiutown 1.29940476 0 0.332047741 39133070360 9.72454E-05

7.2.3 Testing the significance of the dummy variables

To test the significance of the University Town location, we test the individual null hypothesis
using the t-test. From the output above, we conclude that all of the parameters are significant,
using a one-tailed 5% level test. (Remember that Excel reports p-values for a two-tailed test). To
conclude that the 9, is statistically different from zero means that there is a shift in the intercept
for houses near the university. Similarly, concluding that y is different from zero means that the
marginal effect of the size of the house is different for houses near the university. But Excel
doesn't know that we have allowed the intercept and the coefficient on SQFT to differ across
observations. It is our responsibility to correctly determine the intercept and slope estimates.
Looking at the original model that we estimated

Alternatively, we can test the significance of the location by testing the joint null hypothesis
H,:8, =0,y, =0 against the alternative that at least one coefficient is not zero. To construct the

F-test, we will run the following restricted model:

PRICE =P, +B,SQFT +B,AGE +8,POOL +8,FPLACE +e

And compare the SSEs from the restricted model and the unrestricted model (labeled Dummy
and Interaction) using the F-test template. Since we are testing two hypothesis, J = 2 with the
other input data of N = 1,000 and K = 7.

7.2.4 Further calculations

When the UTOWN is equal to one, the intercept is B, + 6; and when UTOWN is zero the constant
is simply B;. Similarly, the coefficient on SQFT when UTOWN is one is equal to 3, + v, and is
equal to B, when UTOWN is zero. We can calculate the estimates for these parameters on the
Excel regression output worksheet.

In cell A26, type the label Newlntercept and in cell A27, type the label New Beta2.In cell
B26, type =B17+B20 to calculate the intercept when UTOWN is equal to one and type =B18+B23
to calculate the coefficient estimate for SQFT when UTOWN is equal to one in cell B27.
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16 Coefficients 16 Coefficients
17 |Intercept 24 49933329 17 |Intercept 24 4399533529
18 |zof 7. 612176612 18 | soft 7 B12176612
19 |age -0.190086335 19 |age -0. 190086358
20 |utown 27 45295601 20 |utowen 27 45295601
21 |poal 4 377164078 21 |poal 4 37164075
22 [fplace 1.64917557 22 |fplace 1.64917557
23 |sgfteutown 1.29940476 23 | sfteutown 1.29940476
24 24

25 25

ENEW Intercept =+B17+B20 26 [New Intercept 51.9529353
27 |Mew Betal =B13+B823 27 |Mew Bet 8911581373

PRICE =51.953+8.9116SQFT +—0.1901AGE + 4.3772POOL +1.6492FPLACE

7.3 APPLYING DUMMY VARIABLES

In this section we will illustrate a variety of applications of dummy variables using cps_small.xls.

7.3.1 Interactions between qualitative factors

First we will consider the interaction between two dummy variables, black and female in the
following model:

WAGE =B, +B,EDUC +§,BLACK +8,FEMALE +y(BLACK x FEMALE) + e

Open cps_small.xls. Label column K blackXfemale. In cell K2 create the interaction variable by
typing =F2*E2.

@ File Edit View Insert Format  Tools Data  Window Help  Adobe PDF

mwEr ERENEX Y Ry @
el s L H § & snaglt [ | window - H
NCRMINY > ¥ & =1FIE2
A [ B8 [ ¢ | o | E [ F | 6 | H [ 1 [J] K|
1| wage educ exper  exper?z | female black white  midwest south |west blackXfemale
| 2 ] 357 12 0 o[ 11 0] 1 1 0 0O=+FZE2
| 3 | J.68 13 1] 0 1 0 1 1] 1] 1]
EN 3.79 12 1] 0 1 0 1 1] 1] 1

Copy this formula down the column to row 1001.
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A | B | ¢ | o | E | F | & | H [ 1 4] K
1 | wage educ exper | exper2 female black white | midwest| south |west blackXfemale
2 357 12 0 1 1 a 1 1 1 1 a
| 3 | .68 13 0 1 1 a 1 0 1 1 a
4 3.79 12 1] 1] 1 1] 1 1] 1] 1 o
= 4.14 12 0 1 a a 1 0 1 1 a
| B | 4.42 13 0 1 1 a 1 1 1 1 a
| 7| 4.42 12 1] 1] o 1 1] 1] 1] 1] o
= 4.58 12 0 1 1 a 1 1 1 1 a
ER 4.79 12 0 1 a a 1 0 1 1 a
| 10 | 4.86 12 1] 1] o 1] 1 1 1] 1] o
11 ] 5.16 13 0 1 1 a 1 0 1 1 a
12 ] 5.16 12 1] 1] o 1] 1 1] 1] 1 o
| 13 | 5.16 16 1] 1] 1 1] 1 1] 1] 1] o
|14 | 553 12 0 1 a a 1 0 1 1 a
| 15 | 5.49 16 1] 1] 1 1] 1 1] 1] 1] o
|16 | 12.89 16 0 1 a a 1 0 1 1 a
17 ] 316 13 1 1 a a 1 0 1 1 a
|18 | 3.68 12 1 1 1 1 1] 1] 1] 1] 1
1 4.04 11 1 1 1 1 a 0 1 1 1

Recall that you need the X-Range variables next to each other. Insert columns and organize the
columns by copying and pasting.

EJ Microsoft Excel - cps_small xls

@ File Edit Miew Insert  Format  Tools Data  Window  He

HRRE=N" NERETIE NEN A SR =R AR B

R, S 5 ! : (& snaalt 121 | window - !
05 - &

A | B | ¢ | D | E |
1 wafie educ female black | blackXfemale
2 3.57 12 1 a a
3 3.68 13 1 a a
4 3.79 12 1 a a
] 4.14 12 a a a
3] 4.42 13 1 a a
7 4.42 12 a 1 a
g 4.55 12 1 a a
9 479 12 a a a
10 4.86 12 a a a

Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-Range
and columns B through E as the X-Range. Don’t forget the include labels by checking the Labels
box. Save to a new worksheet called “Interactions btw dummies”.



112 Chapter 7

Regression

Input
Input ¥ Range:

Inpuk X Range:

Is:

Cubput opkions

() Qukput Rangs:
(%) Mew Worksheet Ely:

[] confidence Level: %

$ag1:$a%1001
$B41:5E51001

[] canstant is Zera
-

Interactions bkve dummi

) Mew Warkbaok
Residuals
[ residuals [ residual Floks
[] standardized Residuals [] Line Fit Plats
Marmal Probability
[] Mormal Probability Plots
The output will be:
A | B C | D E F | G |
1| SUMMARY OUTPUT
2
3 Regression Statistics
| 4 [Multiple R 0498160217
| 5 |R Sguare 0248163601
| B |Adjusted R Square 0245141144 5S5E{Unrestricted)
| 7 |Standard Error o 427244562 |
B |Ohservations 1000
9
10 | ANOWA
11 oif o) S Ms = Significance F
| 12 |Regression 4 95?3.?88?8#2418.44?196 82106554 |  2.92685E-60
| 13 |Residual 995 29307708620 2945498353
14 (Total 999 38981 4974
15
16 Coefficients | Standard Error t Stat FP-value Lower 95% Lipper 95%
| 17 |Intercept -3230327242) 0967499411 -3.33884156 0.000872491) -5.128900665 -1 3175382
|18 |educ 1116823458 0.065714406 16.019980%91 1.46665E-51 0930019325 1253627593
| 19 [female -25502070371  0.3589685641 -7.095280104 2 44952E-12 -3.257899342 -1.846240899
| 20 |black -1.831239486 0 0895726460 -2 044418189 004175021 -3.588969205  -0.07 3509766
21 |black¥fermale 055379052202 1.216952881 0.483095729 0629134045 -1.800185425 2975995369

To test the joint hypothesisH, :8, =0,5, =0,y, =0, we will need to estimate the restricted model
and carry out an F-Test. Estimate the Restricted model, assuming the null hypothesis is correct.
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Regression g|
Input
QK
Input ¥ Range: $ag1:$8$1001 k“
Cancel
Input X Range: $B51: 4651001
il Hel
5!; i [] Comstant is Zero
[] confidence Level: ,
Cubput opkions
B

() Qukput Rangs:
(%) Mew Worksheet Ely:

) Mew Warkbaok
Residuals

[ residuals
[] standardized Residuals

Marmal Probability
[] Mormal Probability Plots

Restricked

[ residual Floks
[ Line Fit Plats

Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-Range

and columns B only as the X-Range. Save to a

new worksheet called “Restricted.”

A | E | C | D | E |
1 [SUMMARY OUTPUT
2
3 Regression Statistics
4 |Multiple R 0.449850565
5 |R Square 0.202365533 55E(Restricted)
6 |Adjusted R Square 0.2015663
7 |Standard Error 55831692977
8 [Observations 1000
9
10 | AROWA,
11 df 55 | s F
12 |Regression 1) 7O05.51179 7855.511508 253.1996931
13 |Residual 995 31092.98589 ) 31.15529649
14 |Tatal 999 J8951.4974
15
16 Coefficients | Standard Errar t Stat F-value
17 |Intercept -4.912180625 0966757511 -5.080930955 4.48182E-07
18 |educ 1.138517173 0.07154973) 1591224978 5.59313E-51

We can now open the F-test template and fill in the Input data.
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A | B
| 1 |Hypothesis Testing - F-Test
| 2 |
| 3 |Data Input
Ex J 3
| 5 | n 1000
|6 | K 5
| 7| SEE-RESTRICTED 31092.98589
| 8 | BEE-UNEESTEICTED 29307.70862
9 | ATPHA 0.05
10|
| 11 | Computed Values
12| df-numerator 3
| 13| df-denominator 995
14 | F 20.2034547
| 15 | Right Critical value 2613848392
| 16 | Decision Feject MNull
| 17 | p-value 1.02707E-12

7.3.2 Adding regional dummy variables

Next, we can add dummy variables with several categories such as the regional dummies. Our
model becomes:

WAGE =B, +B,EDUC +8,SOUTH +5,MIDWEST + 8. WEST
+8,BLACK + 8,FEMALE + v, (BLACK x FEMALE) + e

Since the dummies are already present in the file, we simply estimate the model using
Tools>Data Analysis>Regression, after arranging the columns for the X-Range variables.

E3 Microsoft Excel - cps_small.xls
] Fle  Edi Diata
HRR=N" BEFETR= REN RS- N WEER=N AR
el b ! (& snaglt [ | window - !

- &

Wiew Insert Format  Tools Window  Help  Adobe PDF

RN N N R @!gnrial

R25

A | B | ¢ | b JE] F | & | H [ 0 K
1| wage educ  midwest | south west female black | blackXfemale exper | exper2  white
| 2 | 387 12 1 1] 1] 1 1] a 1] a 1
| 3 | J.68 13 1] 0 0 1 0 a 0 a 1
EN 3.79 12 1] 0 1 1 0 a 0 a 1
| 5 | 4.14 12 1] 1] 1 a 1] a 1] a 1
6 | 4.42 13 1 0 0 1 0 a 0 a 1
| 7| 442 12 1] 1] 1] a 1 a 1] a 1]
G | 4.58 12 1 0 0 1 0 a 0 a 1
EN 479 12 1] 1 0 a 0 a 0 a 1
| 10 | 4.86 12 1 1] 1] a 1] a 1] a 1

Use column A as the Y-Range and columns B through H as the X-Range. Save to a new
worksheet called “Regions.”
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Regression g|
Inpuk
oK
Input ¥ Range: $a51:5A41001 k_
—Cancel
Input ¥ Range: $B41:$H$ 1001
Hell
Labels [] Constant is Zero
[] Confidence Level: %o

Jukput options

() Dukput Range: A
%) New Workshest Ply: Regions

() News Workbook

Residuals

[ residuals [ Residusl Plots

[] standardized Residuals [ Line Fit Plats

tormal Probability
[ ormal Probability Ploks

The output will provide us with the unrestricted model to test the joint hypothesis
ofH,:8,=0,38,=0,5,=0.

Microsoft Excel - cps_small.xls

@ File Edit ‘iew Insert Format  Tools Daka  Window  Help  Adobe PDF

RN RERE = NN A RN AR RACRI - RS 1% 1

P o ! (S snagle | | window - !
219 - i
A | B | C | D | E |

1 [SUMMARY QUTPUT

2

3 Regression Statistics
4 [Multiple R 0.503446397
| 5 [R Sguare 0.253458275
| B |Adjusted R Sguare 0245190335
| 7 |Standard Error 5416271996

8 |Observations 1000

|

10 | ANOWA

1 off 55
12 [Regression 7 9880.18308‘_411.454?26 43.11339696
| 13 [Residual 9920 29101.31432) 29.33600234

14 |Tatal 993 38251.4974

15

16 Coefficients | Standard Error t Stat F-value
|17 [Intercept -2 455685517 1.050990434 -2, 336544117 0.019661205
| 18 [educ 1.102461555 0.0629865191 1575255832 4.56044E-50
|19 [rridwest -0.499562279 ) 0.506628233 ) -0.0988003134  0.323392031
| 20 [south -1.24428066 0 0479427352 -2.595347668 0.009539076
| 21 [west 0546183401 0.519397714 -1.0558731906 0.289524538
| 22 |fernale -2.500920325 035997464 | -6.947490311 | B.72343E12
| 23 [black -1.6076E3765 090343217 -1.779506584 0075462774
24 |blackxfemale 06464628 1.215207538  0.53197728 0554860847
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Under the null hypothesis, the restricted model

is the full (unrestricted) model from the previous

section. If we fill in the Data Inputs in the F-Test template for this test, we fail to reject the null

hypothesis at 5% level.

A | B

| 1 |Hypothesis Testing - F-Test
| 2 |
| 3 |Data Input
L& I 3
| 5 | N 1000
| 6 | K 3
| 7 | SEE-REETRICTED 29307 .70862
| G | SEE-UNEESTRICTED 29101.31432
ER ALPHA 0.05
10|
|11 | Computed Values
[ 12 | df-numerator 3
13| df-denominator 992
[ 14 | F 2.345176344
| 15 | Fight Critical walue 2613875482
| 16 | Decision Fail to Reject Mull

17 p-value 0.071445679

7.3.3 Testing the equivalence of two regressions

To test the equivalence of the wage equations
country, we create an interaction variable for

for the south region versus the reminder of the
each variable in the regression model with the

dummy variable south. In other words, our equation

WAGE =, +B,EDUC +§,BLACK +3,FEMALE + v, (BLACK x FEMALE) + e

becomes

WAGE =, +B,EDUC + 8,BLACK + §,FEMALE + y,(BLACK x FEMALE) + 6,SOUTH

+0,(EDUC x SOUTH) +0,(BLACK x SOUTH) + 0, (FEMALE x SOUTH)

+ 0, (BLACK x FEMALE x SOUTH) +e

First we have to create the interaction variables as explained in the previous section.



Nonlinear Relationships 117

B3 Microsoft Excel - cps_small.xls

@_] File Edit Mew Insert Format  Tools Data  Window Help  Adobe PDF

HRRER - R R A AR A R R TR (A W e Y R - 10~
@ k| ﬁ!i@Snaglt = | window v!
L3 - & =K32

A | B | ¢ | D | E [ F ] G [ H [ I [ J |
L1 | wage educ black | female blackXfemale south educXsouth blackXsouth femaleXsouth blackXfemaleXsouth
| 2 | 3.87 12 ] 1 ] 0/=B2"F2 =C2*F2 =+D2"F2 =E2"F2
13 | 3.68 13 ] 1 ] 0
EN 3.79 12 ] 1 ] 0
| 5 | 4.14 12 ] ] ] 0
| B | 4.42 13 ] 1 ] 0
7 4.42 12 1 ] ] 0

After labeling and writing the formulas, copy the formulas for all 1,000 observations.

E3 Microsoft Excel - cps_small.xls

@] File Edit Wjew Insert Format  Tools Data  Window Help  Adobe PDF

PN EE RS SS|VE KBS @ F ] 2] AE 100% v.g.linrial T
@ = %J! ®Snag1t ' | window - !
G2 A A =B2*F2
A | B | ¢ [ D ] E | F ] G | H | I | J

| 1 | wage | educ | black | female blackXfemale south educXsouth blackXsouth femaleXsouth blackXfemaleXsouth
| 2| 3.87 12 1] 1 0 ] ] 0 0 5]
| 3| 3.68 13 0 1 0 ]

4 379 12| 0 1] 0 ]

L] 4.14 12 ] 1] 0 1]

| B | 4.42 13 1] 1 ] ]

2| 4.42 12 1 1] 0 0

| 8 | 4.58 12 0 1 0 ]

Once the interaction variables are created, we estimate the model by Tools>Data
Analysis>Regression, using column A as the Y-Range and columns B through J as the X-
Range. Save to a new worksheet called “FULL.”

Regression [5__<|
Inpuk -
Input ¥ Range: $adl:¢a$1001 _ “
|
Input % Range: $E$LE51001  [ea
Hel
Labels [ Constant is Zero

[ canfidence Level:

Cutput opkions
() OuUkpUE Reange:
(®) New Workshest Ply:
() Mew Workbook,

Z D

c

I #
|’u

Residuals
[ residuals [ residual Plots
[] standardized Residuals [ Line Fit Plats

Maormal Probability
[ Mormal Probability Plaks

The results will give us the unrestricted model results.
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& | B | & | D | E
| 1 [SUMMARY OUTPUT
2
3 Regression Statistics SSE(Unrestricted).
| 4 |[Multiple R 0.505658656
| 5 |R Square 0255731131
| B |Adjusted R Sguare 0.24896505
| ¥ |Standard Error 5.413480648
8 |Observations 1000
9
|10 [ANTwA
11 df S5 s F
| 12 |Regression 9 90965754 1107642489 37.7960513
| 13 |Residual 990 29012.715 ) 29.30577272
14 |Total 999 35951.4974
15
16 Coefficients | Standard Error t Stat F-value
| 17 |Intercept -3.5775387 1.1513322 -3.107301191 ) 0.001941564
| 18 |educ 1.165847216 |  0.0582408377  14.1471931  1.61003E-41
| 19 |black -0.431164992 0 1.348248995  -0.319796264  0.749190255
| 20 |female -2.754044353 0 0425703319 646936796 1.54438E-10
| 21 |blackXfernale 0067319743 1906317869 0.035314018 0971836465
| 22 |south 1.302260035 ) 2114734976 0615802951 0.535166125
| 23 |educksouth 0191725337 0154239615 -1.243035629  0.214149011
| 24 |blackXsouth 17444319650 1826694979 -0.954966201 0.339827908
| 26 |fernaleXsouth 0.91193858  0.795976102 1.1456856878 0.252202013
26 |blackXfernalexsouth | 0542832938 2511153728 0.21616674 0.828900751

To test the hypothesis that there is no difference between the model for the south and the rest of
the nation, we have to test the joint hypothesis H,:0,=60,=6,=0,=0,=0 against the
alternative that at least one of the five hypotheses is not true. Under the null hypothesis, the
restricted model will be

& | B | C | D | E
1| SUMMARY OUTPUT
2
3 Regression Statistics
| 4 |Multiple R 0.455160217
| 5 |R Square 0.245163601
| B |Adjusted R Square 0245141144 SSE(Restricted)
| 7| Standard Errar 5,427 244562
8 |Observations 1000
| 9 |
10 [ANOWA
11 off 55 S Ms F
| 12 |Regression 4 BE/73.7857 2418.447156 §2.106554
| 13 |Residual 995 29307 .708m2) 29.45493353
14 [Total 993 Jg551.45974
15
16 Coefficients | Standard Error t Stat P-value
17 |Intercept -3.230527242) 0967493411 -3.33884156 ) 0.000572451
| 18 |educ 1.116823459  0.0897144065 15.01993091 1.46665E-51
19 |black -1.8312304586|  0.895726469 ) -2.044418189 ) 0.041175021
20 [female -2.552070371 | 0.399635641 -7 095280104 2.44952E-12
21 |blackxfamale 0557905222 1.218953851 0.453095729 0.629134045

If we input the Data into the F-Test template, we will get:
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A I B |
' 1 |Hypothesis Testing - F-Test
| 2 |
' 3 |Data Input
4 I 5
5 N 1000
3 K 10
7 SEE-RESTRICTED 29307.70862
| B | SEE-UNEESTRICTED 20012.715
| 9 | ATPHA 0.05
10|
11 | Computed Values
12 ] df-numerator 5
| 13 ] df-denominator 290
14| F 2.013211682
| 15 | Right Critical value 2223143069
| 16 | Decision Fail to Reject Null
17 p-value 0.074378974

7.4 INTERACTIONS BETWEEN CONTINUOUS VARIABLES

When we include the product of two continuous explanatory variables in a model, we alter the
relationship between each of them and the dependent variable. Reporting and interpreting the
results require care.

The model we use here is based on a "life-cycle™ model of the effects of age and income on a
person's expenditures on pizza. We believe that as a person ages, the marginal effect of income
will probably change (the marginal propensity to spend on pizza probably falls). Since we assume
that the effect of income depends on age, we include an interaction variable that is the product of
these two variables. The model we will estimate is

PIZZA =B, +B,AGE +B,INCOME + B, (INCOME x AGE) + e

where PIZZA = individual’s annual expenditure on pizza, in dollars
AGE = the age of the individual in years
Y = the annual income of the individual, in dollars

Open pizza.xIs to estimate the above model and create the interaction variable after arranging the
order of the explanatory variables.
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Microsoft Excel - pizza.xls

E_] File Edit \iew Insert Formak  Tools Data
J _I.H_h,_ﬂl J:, ?Qjﬂeﬁ—é_ﬂ
'@ = = ! E@Snaglt 1 | window

MORMINY * X A =B2C2

A | B [ C | D |

1| pizza afge income incomeXaqge
| 2 | 1091 250 15000]=EZ*C2 |
| 3 | 0 45 30000
4 0 20 12000
| 5 | 103 2a 20000
|6 | X0 26 15000
| 7 189 35 30000

Copy the formula to all 40 cells.

Microsoft Excel - pizza.xls

T|

iE] Fie

Edit  Wiew Insert

Format  Tools

Daka

FRNER" RERENIE RN N N

'@ @ = ! @Snaglt 1| window
52 - A 0
A& | B | T | D
1| pizza age income incomeXage
2 109 25 15000 375000
| 3 | 0 45 30000 1350000
4 0 20 12000 240000
| 5 | 108 28 20000 560000
B 220 25 15000 375000
7 189 34 30000 1050000
8 | b4 40 12000 430000
ER 262 22 12000 264000
10| b4 30 2a000 40000
11 35 Y 22000 462000
12 | 84 40 44000 1760000
Estimate the model.
A B [ & | D E
1 Regression Statistics
| 2 |Multiple R 0.622349295
| 3 |R Square 0.387318645
| 4 |Adjusted R Square 0.3362651866
| 5 |Standard Errar 126.996134
6 |Observations 40
7
IERE
g off 55 Mz F
| 10 |Regrassion 3 36704325 122347 75| 7.586037514
| 11 |Residual 36 580508.65 16128.01806
12 |Total 38 9476519
13
14 Coefficients Standard Error t Stat F-value
| 15 |Intercept 161.465432 120.6634096 . 1.338147434 | 0.189239683
16 |age -2 977423365 3.352100814 -0.58822608 0.380315589
|17 |income 0.009073877 0.003669598  2.472716864 0.01826628
18 |incomeXage -0.000160211 8.67343E-05 -1.847147792 0.072957528
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The effect of age and income are no longer given by their estimated coefficients. Instead we must
calculate the marginal effects.

To find the marginal effects of age and income, we take the first derivative of the pizza
function, with respect to the variable of interest. We find that the marginal effect of age on pizza
expenditures is b, + b,Y and the effect of income is b; + b,AGE. These will be estimated and
calculated using Excel. In cell A21, type the label AGE and in cell A22, type the label INCOME.
In cell A24, type the label age effect and in cell A25, type the label income effect. In cell B24,
type =$B$16+(B18*B22) and in cell B25, type =$B$17+($B$18*B21). This template can now be
used to calculate the marginal effects, given different levels of age and/or income. Below is an
illustration of two examples.

19
20 [INPUT ¢h EX1 Ex2
21 |AGE 30 a0
22 [INCOME 90,000 25,000
23 |OUTPUT
24 |age effect =}E$16+iE5150° 622 =§B§16+FEF1ECI
25 |income effect =+5B4517 +5B515°B21 =+EH17 +EBH15"C21

The formulas provide us with the marginal effect of AGE for incomes 90,00 and 25,000 and
marginal effect of INCOME at age 30 and 50.

19
20 [INPUT EX1 Ex2
21 |AGE 3a 50
22 |INCOME 50,000 25,000
23 |OUTPUT
24 |age effect -17.39642745 | -6.982702279
25 |income effect 0.004267542 ) 0.001083319
2B

7.5 DUMMY VARIABLES IN LOG-LINEAR MODELS

Consider the model:

INWAGE) =B, +B,EDUC +y,FEMALE +e

The calculation of the exact effect of a dummy variable in log-linear model is slightly more
complicated. We will use cps_small.xls data to illustrate the calculations. Label cell D1, In(wage)
and type the formula in D2 =In(A2). Copy the formula down all the cells.
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02 - H =LNAZ)
A | B | ¢ | D

1 wage educ female  In{jwaqe

2 357 12 1| 1272566
3 3E8 13 1 1.302913
4 3.78 12 1 1.332366
5 4.14 12 0 1.420696
B 4.42 13 1 1.48514
7 4.42 12 0 1.48514
g 4.58 12 1 1.521659
9 4.79 12 0 1.56653

Estimate the log-linear wage equation by using In(wage) as the Y-Range and EDUC and

FEMALE as the X-Range variables.

Inpuk
Input ¥ Range:

Input ¥ Range:

Labels
[ Corfidence Level:

Cukput opkions
() Output Range:
(%) Mew Workshest Ply:

) Mew Workbook,
Residuals

[ residuals

[ standardized Residuals

Mormal Probability
[] Mormal Probability Plats

(X

o]

$ofugofiont  [Ta
$es1gcsions  [Ta)

[ Constant is Zero

Log-Linear Madel

Cancel

Help

&7

[ Residual Plats
[ Line Fit Plots

The results are;

E3 Microsoft Excel - cps_small xls

@_] File Edit Yiew Insert Format Tools Data  Window Help  Adobe POF
AREA " NEWE A= RN NP R A RN RN NS A1 |
P o ! & snaglt |2 | window -

NORMINY > X & =1007ERFE19-1)

A | ] | & | O

|1 | SUMMARY OUTPUT
2
zRegression Statistics
| 4 [Multiple R 0.516562833
| 5 |F Square 0.266837161
| B |Adjusted R Square 0265366423
| 7 |Standard Error 0.473514303
| 8 |Observations 1000
9
10 [ANOWA
11 df 55 s
| 12 |Regression 2 3146242936 40.73121468
| 13 |Residual 997 2235264934 0.224459953
14 |Total 999 305.2839227
15
16 Coefficients | Standard Evror t Stat
|17 |Intercept 0929035735 0.08374832 11.09318719
| 18 |educ 0102565817 0.006075312 15.88239575
19 [female -0.252603252] 0.0295765973 -8.426577262
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We can calculate the exact effect of the female dummy given the output as:

17 |Intercept 0.929035755
18 |educ 0. 102565817
19 |[female -0.252603282
20
21
22
23 Imarqginal effect of female dummy |
24 %100*[E}{F’(Eﬁ19)—1]

The marginal effect will be a nonlinear function of the parameters:

2

23 |[marginal effect of female dummy
24 -22.32240183
25

Similarly, we can calculate other nonlinear marginal effects when we include interaction terms.
Estimate the following model:

IN(WAGE) =B, +B,EDUC + B,EXPER + v, (EDUC x EXPER) + €

First, we need to create the interaction variable and estimate this log-linear model using the
In(wage) as Y-Range and EDUC, EXPER and educXexper as the X-Range variables.

Microsoft Excel - cps_small.xls

@_] File Edit ‘iew Insert Format Tools Data  ‘Window

NEEHRSIS A VE &S B-F 9

ﬁ @ = H @Snaglt 121 | window -
=) - f =HI*2

A | B | ¢ | o ] E |
| 1 | wage | Infwage) educ exper educXexper
| 2 | 357 1.272566 12 0 0
| 3 | 3E8 1.302913 13 0 0
4| 379 1.332366 12 0 0
1 5 | 414 1.420596 12 0 1]
| 6 | 442 1.48614 13 0 1]
| 7 | 4.42  1.48614 12 0 0
| 8 | 455 1.521699 12 0 0
8 | 479 1.56653 12 0 1]
10| 486 1.581038 12 0 0
11 516 1.640937 13 0 0
112 | 516 1.640937 12 0 0

Given the coefficient estimates from the regression, we can calculate the approximate marginal
effect of experience using
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16 Coefficients
|17 |Intercept 0152752545
| 18 |educ 0.134086013
|19 |exper 0.024916391

20 |educKexper -0.000962375
|21 |
| 22 |
| 23 |marginal effect of experience
| 24 |=100"(B19+B20"16)

25

The marginal effect will be again a nonlinear function of the parameters for education of 16
years.

4

marginal effect of experience
0.951535471
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Heteroskedasticity

Chapter Outline

8.1 The Nature of Heteroskedasticity 8.4 Detecting Heteroskedasticity

8.2 Using the Least Squares Estimator 8.4.1 Residual plots

8.3 The Generalized Least Squares Estimator 8.4.2 The Goldfeld-Quandt test
8.3.1 Transforming the model 8.4.3 Testing the variance function

8.3.2 Estimating the variance function
8.3.3 A heteroskedastic partition

8.1 THE NATURE OF HETEROSKEDASTICITY

In simple and multiple linear regression models of earlier chapters, we had assumed all the
assumptions of the Classical Linear Regression (CLRM) model have been met.

Y =By +B.% +¢€

where y; is the dependent variable, x; is the i"" observation on the independent variable, B, and B,
are the unknown parameters and e; is the random error. The error assumptions of CLRM are:

E(e)=0 Var(e)=c" Cov(g)=0
One of the above mentioned assumptions of the linear regression model is that the variance of the
error term and of the dependent variable is constant across all of the observations. If this

assumption is not met, OLS estimator is still unbiased and consistent but the least square standard
errors and the tests based on these standard errors are neither consistent nor asymptotically valid.

125
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8.2 USING THE LEAST SQUARES ESTIMATOR

In Chapter 3, we introduced a model of food expenditures as a function of income. At each
income level, a household chooses its level of food expenditures. It seems reasonable that
households with higher incomes have more choices, anywhere from cheap and simple to
extravagant food. This suggests that the variance for high-income households is greater than that
of low-income households. The consequences of estimating the parameters using the least square
estimator, if heteroskedasticity is present, are that the standard errors that Excel reports are
wrong. Therefore, the t-statistics, p-values, and confidence intervals are also wrong. Let's return
to that model and our Excel results to reconsider our assumptions about the variance of the
model.

Open food.xls. Estimate the regression, using food expenditures as the Y-Range and income
as the X-Range. Choose Line Fit Plots under the Residuals option to produce a chart of the
estimated regression line. After some formatting, the graph should look like

Food Expenditures Regression
y = 83.4160x + 10.2096
@ 300
S 250 + ¢
= L 4 *
T 200 + .
c * o P
S 150 + Y
= N * *
W 100 + < ot % ¢
o
o 50 + L 2
o
L 0 : :
0 500 1000 1500

As income increases, the data points are scattered further and further from the estimated
regression line. The residuals, the vertical distances between the regression line and the individual
observations, are getting larger as income increases. The graph above, therefore, suggests that o®
is not constant, but is greater for larger income households indicating heteroskedasticity.

16 Coefficients | SlgndassEror t Stat
17 |Intercept 8341600202 ¢ 43 110163148 1.921577714
18 |Income 10, 20964297 193263 4 577380614

Since, with heteroskedasticity, the reported standard errors are incorrect, we need a method for
determining the correct standard errors for our least squares estimators. We can then recalculate
our t-stats and confidence intervals with these heteroskedasticity adjusted standard errors.

One such adjustment is White's Heteroskedasticity Consistent Standard Errors, which for
the simple regression model is.
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The square root of this is the estimated standard error for b,. Some statistical packages will
calculate White's standard errors automatically. Excel does not, but we can use the standard Excel
functions to calculate it "by hand".
Return to the data contained in food.xls. Estimate another regression, choosing the Residuals
option.
e From the regression output, Copy the residuals from the residual output to the worksheet
containing the original data and Paste these residuals in column C. Include the label.
e Label column D “ehat*2” and square the values in column C here by typing =C*2 in cell
D2 and copy the formula down the column.
o Label column E “xbar”. In cell E2 type =AVERAGE(B2:B41) where column B contains
the income.
e Label column F “(x-xbar)*2”. In cell F2 type =(B2-$E$2)"2. Recall that the dollar sign
anchors the cell containing “xbar”.
o Label column G “numerator”. In cell G2 type =F2*D2. Highlight cells F2 and G2, and
copy these formulas down the columns.

Microsoft Excel - food.xls

@_1 File Edit ‘“ew Insert Format Tools Daka  Window  Help  Adobe PDF

) 25 e (3 (T % B A0 -8 F - AL ZL 4B 100%

P T ! : & snaglt = | window - !
P17 - £
A | B | C | D | E | F G |
1 |Food Exp Income  Residuals ehat*2 xbar {x-xbar}*2 | numerator

2 11522 369 -5.8E9584573 =C242 =+AVERAGE(BZ.BA1) |=(B2-$EF" =F2"D2
3 135.958 4,39 7743665349 5896435

In cell F42, type =SUM(F2:F41) to sum the column;
in cell G42, type =SUM(G2:G41).

Label B44, White's var(b,), and B45 White's se(by).
In cell C44, type =G42/(F42"2)

and in cell C45, type =SQRT(C44).

The results are

37 48255 27140 1220442878 14859481 5677999256 845727 1
38 43829 2716 77 58009497 BO1S.E71 57 08180256 3435566
39 553766 2862 M20440162 4495268 81.27473256 3654328 6
40 257 .95 294 1258295053 1578277 95 94692256 1514308 .5
41 37573 33.4 -48.B8807716 2370529 1903089226 45113279
42 1828.787598 10398342
43

44 |Whites's var(h2) 3109120669 >

45 |White's se(h2) 1.76326988
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Excel's regression output reports the standard error for b, as 2.093263531 which is incorrect due
to the existence of heteroskedasticity. White's standard error is actually different so are the
corrected t-stat and confidence intervals. While it usually the case that the corrected standard
errors, it is not always true as you can see from this example. You should recalculate and report
the corrected t-stat and confidence interval, do not report those produced in the regression output.

8.3 THE GENERALIZED LEAST SQUARES ESTIMATOR

Since the least squares is inefficient in heteroskedastic models, we may wish to use Generalized
Least Square (GLS) which is the Best Linear Unbiased Estimator. GLS estimator works by
transforming the model into a homoskedastic one and applying OLS to the transformed model.

8.3.1 Transforming the model

Since we have var(e )=oc’, we can get constant error variance by dividing e, by o;. To
transform the model, we will weigh the observations using o, . For the food expenditure model,

g 1 X
L261_"'B2_|"'_|
[on (e}

We saw in the graph of the regression that the estimated error terms seem to get larger as income
increases. So we can assume the variance of the model is proportional to income and can be

modeled as var(e,) =G x; . It can be shown that, if we transform our original data by dividing all

observations by the square root of x;, the new, transformed model is homoskedastic and we can

estimate the new model using least squares where the t-stats and confidence intervals are correct.
To estimate the food expenditure model, where we want to weight the data by 1/ \/xT . Go

back to the worksheet containing the original data on food expenditures and income.

Label column C SQRT(x) and columns D, E and F, INT*, X* and Y* respectively.

In cell C2, type =SQRT(B2), where cell B2 contains the first observation on income.
In cell D2, type =1/C2. This creates a new intercept term, not equal to one anymore.
In cell E2, type =B2/C2.

In cell F2, type =A2/C2.

Highlight cells C2 through F2. Copy the formulas down the column.
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Microsoft Excel - food.xls

IE_" File Edit iew Insert Format Tools Data  Window Help  Adobe P
HANEA" BEREIE= RENE- A N TR A R ARl - )
‘@ = = ! &Snaglt & | window -
M18 - e
A | B | [ | D | E [ F

| 1 |Food_Exp Income SQRT(x} INT* x* Y

2| 115.22 369 =80RT(EZ) =1/C2 =+B2/C2 =+ANC2
| 3 | 135.98 438 2095232684 047727395 2095233 B4.89971
EX 119.34 475 2179448472 0458831468 2.179449| 54 75695
| 5 | 114.96 6.03 2 455605832 0.407231481 2455606 46.81533
B | 187.05) 1247 3531286717 02831827360 3531289 5296933
7 24392 1298 3.B02VVEFOV ) 0.Z775E3691 3B07YY | BV 70334

Estimate a regression, using Y* as the Y-Range and INT* and X* as the X-Range.

Include labels and check the Labels box.
Check the Constant is Zero box since we now have our new, transformed intercept term.
Place the output on the worksheet named GLS and click OK.

Inpuk
Ok

Input ¥ Range: FFE1EF 4L
Input ¥ Range: $D$1:$E$4L
Labels Caonstant is Zero
[] Confidence Level: o

Oukpuk opkions
O Cutput Range: B
() New \Worksheet Ply: GLs
() New \Workbook, .
Residuals H ‘r::ul‘l:fcuk:sd

[ Residual Flats &
[] standardized Residuals [JLine Fit Plots
Mormal Probability
[ mormal Probability Plots
The regression results are:

16 Coefficients | Standard Error t Stat F-walue Lowesr 85% Upper 95%
17 |Intercept 0 FEA, HA, H#A, A, H#SA,
18 | INT™ 70684080158 23 78EVA16S 33076212060 000206413 3052633132 126841529

19 [x7 1045100906 1.385891228| 7 5410025357 4.61376E-09 7 B45418968  13.25659915

The estimates, b; and b,, differ from the original regression results. However, the interpretations
are the same. Transforming the data in the manner we did changed a heteroskedastic model to a
homoskedastic model; not the meanings of our estimates. The GLS standard errors are lower than
those calculated using White's approximation. This is to be expected because the GLS procedure
is more efficient and provides smaller standard errors, higher t-stats and narrower confidence
intervals.
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8.3.2 Estimating the variance function

In the above example, the observation’s standard error (or what it is proportional to) is known. In
most cases this information will not be known and we will have to estimate it. This turns the GLS
estimator into feasible GLS (FGLS).

The first step is to choose a model for variance that is some function of the independent
variables. A common model of the variance uses the exponential function:

o’ =exp(oy + 0,7, +...+ 0 Z; )
where the z,, are independent variables and o ’s are the unknown parameters. Taking the natural
logarithm, substituting the least squares residuals for the unobservable o?, and adding an error

term gives you a regression model that can be estimated for o, .
In(éiz) = In(csi2)+vi =a, +0,Z +V,

where the & are from least squares estimation of the original heteroskedastic regression model.
Let z, =log(income) .

To estimate this model using the food expenditure data, go back to the worksheet containing
the original data on food expenditures and income.

Label column C log(income) and type =In(B2) in cell C2.

Copy and paste the residuals from the initial regression to column D.

Label columns E and F, resid2 and log(resid2), respectively.

In cell E2, type =D2" 2, where cell D2 contains the first observation on residuals.
In cell F2, type =LN(E2).

Highlight cells E2 and F2 and copy the formulas down the column.

Microsoft Excel - food.xls
@_1 File Edit “iew Insert Format  Tools Data  Window Help  Adobe

NN NENE NI NN A SR =N AR RA R -
bl il & H § S snagl ' | window - !
L13 - fx

A [ B | C | o | E | F
' 1 |[Food_Exp Income log(income) Residuals resid2 log{resid2)
| 2 | 115.22 363 =+ -5.869558 =+D2°2  =LMNIEZ)
| 3 | 135.98 439 1 478329227 7743665 59.96435 4.0837503
4 119.34 475 1558144618 -12.5718 158.0503 5.0629134
| 5 | 114.96 6.03 1.796747011 -30.0201 901.2094 6.8037376
B | 187.05 1247 252332576 236802 5B0.7542) B.3292827
7 243.92 12598 2563409711 27.98283 7B3.0389 66631824
a8 | 267 .43 142 2653241965 39.03707  1523.893 7.3290233
EN 23871 1476 2691920819 4.599668 21.15694 3.0519682
10| 28594 15932 2729159164 56.11227 314B8.587 5.0547039
11| 3778 1638 2796671393 67.02795 4492746 54102194

Estimate a regression, using log(resid2) as the Y-Range and log(income) as the X-Range.
Include labels and check the Labels box. Place the output on the worksheet named FGLS and
click OK. The regression results are:
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A1 - A SUMMARY QUTPLUT
A B | & | o | E

1 |5UMMARY QUTFUT
2
3 Regression Statistics
4 |Multiple R 0672361183
5 [R Sguare 0.327597324
6 |Adjusted R Sguare 0.309902517
7 |Standard Error 1.720854738
8 |[Observations 40
g
10 | ANDVA,
11 cif 55 s F
12 |Regression 1 54 B2664506 1 54 82654506 18 51375486
13 |Residual 38 1125309656 2961341201
14 |Total 39 167 3565107
15
16 Coefficients | Standard Ervor b Sitat P-value
17 |Intercept 0937795953  1.583105624 | 0.592377381 0.557 106636
18 |loglincome) 2320238722 0541335797 | 4302761307 0.000113872

8.3.3 A heteroskedastic partition

To illustrate a model with a heteroskedastic partition, we use a model of wages as a function of
education and experience. In addition a dummy variable is included that is equal to one if the
individual lives in a metropolitan area. This is an intercept dummy variable indicating people
living in metropolitan areas make higher wages relative to those living in rural with similar level
of experience and education.

First, open cps2.xlIs and highlight columns D through | and Edit>Delete the columns.

wage, =B, + f,educ + B,exper + ,metro, + ¢,

Estimate the model using Tools>Data Analysis>Regression with WAGE as the Y-Range and
EDUC, EXPER and METRO as the X-Range.

15

16 Coefficients | Standard Ervor t Stat Pvalug

17 | Intercept 9913984218 1.075662517 ) 9. 26630734 1.77326E-19
18 |educ 1.233963998 | 0069961261 17.63781812 G.42574E-B1
19 | exper 0.133243681 0015231619 5747834543 9.13739E-18
20 [metro 1.524104206) 0431090949 3535458611 0.000425795

Next, estimate each subset (metro and rural) separately using least squares and save the standard
errors of the regression.

o Highlight all the columns of the data, including labels, choose Data>Sort from the menu
bar.

o Click on the down-arrow in the Sort By box. Choose METRO.

e Check either Ascending or Descending option.
Check the Header Row option, since we included the labels and click OK.
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Sark by
v| © scending
) Descending
Then by
P (#) Ascending
() Descending
Then by

w | (® ascending
() Descending
My data range has

() Header row () Mo header row

[thinns... ] I [ J [ Cancel ]

Looking at the METRO column, you will observe that the column will contain zeros till row 194
and after that row, METRO will be one.

152 16.21 12 29 0
183 16.28 18 26 1]
154 16.37 12 22 1]
185 16.94 13 29 0
186 15812 14 12 1]
157 18.17 16 g 0
188 | 18.33 12 40 1]
189 2125 16 g 0
190 221 16 2 1]
191 20,42 15 34 1]
192 26.98 12 45 0
193] 2726 16 3 1]
194 207 12 7 1
195 212 12 34 1
196 254 16 20 1
197 | 268 12 24 1
195 3.09 13 4 1
199 317 12 22 1
200 3.2 12 23 1
201 327 12 4 1
1202 3.32 12 11 1
203 3.32 13 3 1
204 | 3.34 18 15 1
205 3.39 13 7 1

Now we must estimate two regressions, using the first half of the data in the first one (METRO =
0), and the second half of the data in the second regression (METRO = 1). The only output we're
interested in from these regressions is the estimated variance of the model.

Estimate a regression on the data, using cells A2 through A193 for the Y-Range and cells B2
through C193 for the X-Range. DO NOT include labels and don’t include the METRO variable
in column D. Place the output on a worksheet named “regression 1.”
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Regression E|
Inpuk
[0]:4
Input ¥ Fange: fadziEatl1os
-Cancel
Input ® Range: $E$2:$C5193
Hel
[ Labels []constart is Zero
[] confidence Level: L

Oubpuk options

() Oukput Range: %
(%) Mew whorksheet Ply: Rural

() Mew workbook

Residuals

[ residuals [ residual Plots

[] standardized Residuals [] Line Fit Floks

Maormal Probability
[] Mormal Probability Plots

Repeat the procedures above, but now include cells A194 through A1001 as the Y-Range and
cells B194 through C1001 as the X-Range. Save output to a worksheet named “regression 2.”

Inpuk
Ok
Input ¥ Range: $as194:$a41001 -K‘
Input ¥ Range: $E4194: £CF1001
Hel
[ Labels [] constant is Zero
[ confidence Level: %

DukpuUk apkions

O Oukput Range: T
(%) Mew Worksheet Ply: Metra

() New Workbook

Residuals

[ residuals [ Residual Plots

[] standardized Residuals [ Line Fit Plats

Motrnal Probability
[ ormal Probability Ploks

In order to obtain a homoskedastic model, we will transform the data by using the estimated
variances from each partition. The estimated variances of the models are what we are interested
in; no other output from the regressions is important at this point. We divide the data on the first
193 observations by the square root of the estimated variance from a regression using just those
observations, and divide the last 808 observations by the square root of the estimated variance
obtained from the regression using just these data. Then we "pool™ the transformed data and
perform generalized least squares estimation to obtain the correct estimates.

The simplest thing to do at this point is to simply write down the values of the MS Residuals
from the ANOVA tables of the regressions; metro and rural. From metro, the value is
31.8237318; from rural, it is 15.24298659. Transform the first 193 observations using the square
root of the estimated variance from rural and the rest of the observations using the square root of
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the estimated variance from metro as shown in Section 8.3.1 of this manual. Estimate a
regression, using wage* as the Y-Range and int*, edu*, exper* and metro* as the X-Range
where the stars represent the transformed values for the intercept (int), years of education (edu),
years of experience (exper) and dummy variable for metropolitan area (metro), respectively.
Include all 1000 observations. Include labels and suppress the intercept by checking the Constant
is Zero box.

8.4 DETECTING HETEROSKEDASTICITY

8.4.1 Residual plots

If the regression errors are homoskedastic, when we plot the residuals, there should be no
systematic pattern evident. If the errors are heteroskedastic, we may be able to detect a particular
pattern in the residuals and perhaps even discover the form of the heteroskedasticity.

Let’s use the wage model to plot the least square residuals against the metro dummy. Open
cps.xls. Delete all the columns except wage, educ, exper, metro and save the file as
cps_modified.xls. Estimate a regression, wage as the Y-Range and educ, exper and metro as the
X-Range. Under the Residuals options, choose Residual Plots. This will produce a graph of the
residuals, plotted against each of the explanatory variables.

Regression EI
Inpuk

-OK

Input ¥ Range: i
Cancel

Input ¥ Range: $B$1:$044734
Labels [] Constant is Zero
[ Corfidence Level: e %

Cutput options

O Cukpuk Range: E
() New Worksheet Ply: Plats

() New Workbook,

Residuals

[ residuals Residual Plats

[ standardized Residuals [ Line Fit Flats

Mormal Probabilicy
[ Mormal Probability Plats

Let’s look at the plot against the metro dummy variable. After formatting, it should look similar
to this.
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Residual Plot

20
&0 *
40
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Residuals

0.5 15

=20
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In this plot, the least squares residuals are grouped according to rural (metro=0) or metropolitan
(metro=1). Wider variation of residuals at metro=1 indicates higher variance for these
observations and evidence of groupwise heteroskedasticity.

8.4.2 The Goldfeld-Quandt test

Although plots are helpful in diagnosing heteroskedasticity, the Goldfeld-Quandt formally tests
for equal variances. It is a type of F-test and the steps are to order the data based on variance, split

the data into parts, compute the estimated variances, calculate the test statistic GQ =812 / 8§ , and

compare to an F-critical value, based on T;-K numerator and T,-K denominator degrees of
freedom. If heteroskedasticity is present, the GQ test statistic should be large, and we would
reject a null hypothesis of equal variances.

Returning to the wage model, where metro F is 31.824 and rural F is 15.243. Open a new
worksheet and name it “GQ test”. Create the following template to use for any Goldfeld-Quandt
Test.

Microsoft Excel - food. xls

@_] File Edit Wiew Insert Format  Tools Data  Window Help  Adobe PDF

NEEHBR SIS Q| VE] %GR F 9o 8 -G R 100
Emm%lEQSnagIt [ | windon vl
H11 - F
A [ B

Goldfeld-Quandt Test for Equal Variance
Input Data
T
T2
K
SigmaHatSquared1
SigmaHatSquared2
Alpha 0.05
Computed Values
df-numerator =B3-B5
df-denominator =E4-E5
GQ =E6/B7
e-tailed Test:Right Critical Value =FINV(ES B10E11)
Decision =IF(B12>B13,"'Reject Ho", "Fail to Reject Ho")
p-value =FDIST(B12EB10B11)

=

|m|
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Fill in the Input Data as T1=808 and T2=193, K=2, and Alpha should be .05, for testing at the
5% level. From the metro worksheet, highlight cell D13 (the MS residual from the ANOVA
table), right-click and choose Copy. Go back to GQ test worksheet and Paste the value into cell
B6. Remember to always place the larger of the estimated variances in the numerator of the
formula for the GQ test statistic. Copy cell D13 from the rural worksheet to cell B7 of GQ test.
The resulting template is

A | E]

1 Goldfeld-Quandt Test for Equal Variance
' 2 |Input Data
| 3 | T1 808
4| T2 193
& | K 2
|6 | SigmaHatSquared1 318237318
7 SigmaHatSquared2 15.24298659
8 | Alpha 0.05
' 9 |Computed Values
10| df-numerator 806
11 df-denominator 191
12 | Ga 2.087762238
13 p-tailed Test:Right Critical Value 1.213925811
14 Decision Reject Ho

15 p-value 1.32044E-09

Let's test for heteroskedasticity in the food expenditures model. Formally, we test the null
hypothesis Hy: 67 = 6° against the alternative H;: 67 = 6°X; .

Since the variance is an increasing function of income we have to sort the data in an
ascending order by income. Open the original data on food expenditures and income, food.xls.

e Highlight both columns of the data, including labels, choose Data>Sort from the menu
bar.

e Click on the down-arrow in the Sort By box. Choose income.

o Check the Ascending option;

e Check the Header Row option, since we included the labels and click OK.

Sort by
v| @ ascending
() Descending
Then by
w (#) Ascending
() Descending
Then by

w | (@ ascending
() Descending
Iy data range has

(¥) Header row () Mo header row

[thic-ns... ] [ a4 ] [ Cancel
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Looking at the column containing income, the numbers should be increasing as you look down
the column.

Microsoft Excel - food
(] Fle  Edb View In:

RN RERE =)
ﬁ = = H @Snagll
J16 -

A | B ]
| 1 |Food_Exp Income
| 2 | 115.22 3.69
| 3 | 135.958 4.39
EN 119.34 475
| 5 | 114.96 6.03
| B | 187.05 1247
| 7 | 24392 1293
| 3 | 267.43 14.2
| 9 | 23871 1478

Now we must estimate two regressions, using the first part of the data in the first one, and the
second part of the data in the second regression. Because there is no natural dividing point, we
will break the ordered sample into two equal halves. The only output we're interested in from
these regressions is the estimated variance of the model.

Estimate a regression on the data, using cells A2 through A21 for the Y-Range and cells B2
through B21 for the X-Range. Do NOT include labels. Place the output on a worksheet named
“regression 1.”

Regression E|
Input
oK
Input ¥ Range: $ag2gagel —\
Input % Range: $E$2:4E521
Helj
D Constant is Zero
Yo
Cutpuk options
O Cukput Range: 5
(%) Mew Warkshest Ply: Regression 1
() Mew Workbook
Residuals
[ Residuals [[] Residual Plats
[ standardized Residuals [ Line Fit Plats

Maorrmal Probability
[ Mormal Probability Plots

Repeat the procedures above, but now include cells A22 through A41 as the Y-Range and cells
B22 through B1 as the X-Range. Save output to a worksheet named “regression 2.”
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Regression g]
Inpuk

-OK ‘
InpLt ¥ Range: $a622: 541 2
Input % Range: $B$22:$6441

Hel

[ Labels [ constant is Zera
[] confidence Level: %

Cutpuk options

i

O Cutput Range:

(%) Mew Worksheet Ply: Regression 2
() Mew Workbook

Residuals

[ ] Residuals [ ] residual Plots
[ standardized Residuals [ Line Fit Plats

Mormal Probability
[ Mormal Probability Plats

Fill in the Input data. T1 and T2 both equal 20, K=2 and Alpha should be .05, for testing at the
5% level.

e From the regression 1 worksheet, highlight cell D13 (the MS residual from the ANOVA
table), right-click and choose Copy.

o Go back to GQ test worksheet and Paste the value into cell B7. Remember to always
place the larger of the estimated variances in the numerator of the formula for the GQ test
statistic.

o Copy cell D13 from the regression 2 worksheet to cell B6 of GQ test.

The resulting template is

A [ ]

| 1] Goldfeld-Quandt Test for Equal Variance
| 2 |Input Data
EX T 20
| 4 | T2 20
| & | K 2
6 SigmaHatSquared1 12921 92662
7 SigmaHatSquared2 357477175
|G | Alpha 0.05
| 9 |Computed Values
10| df-numerator 18
11 ] df-denominator 18
12 GQ 3614755716
| 13 p-tailed Test:Right Critical Value 2217197124
14| Decision Reject Ho

15 p-value 0.00459643

We reject the null hypothesis and conclude that heteroskedasticity IS present. If we assume
proportional heteroskedasticity, we would proceed as in section 11.3. If we couldn't assume any
particular form of the heteroskedasticity, then we should at least calculate White's standard errors
and report the corrected t-statistics and confidence intervals.
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8.4.3 Testing the variance function

There are many other tests to test for the existence of heteroskedasticity. In this section, two more
of these tests will be discussed; Breusch-Pagan and White’s tests. In both of the tests the null is
homoskedastic errors and alternative is heteroskedastic errors. Both of the tests also require
auxiliary regressions.

First, we will illustrate the Breusch-Pagan test using the food expenditure data. Open the
original series, food.xls and estimate the regression, click the residual option to save the residuals.
Then, copy and paste the residuals to column C in the data sheet. Label D1 “resid2” and type
=C2"2in D2.

Microsoft Excel - FOODHETEROTEST. xls

@_] File Edit ew Insert Formak  Tools Da
RN BERE 1= RNk A: SR R
i e ! & snaglt = | window

D2 - A =C242

A | B | ¢ | D
| 1 |Food_Exp Income Residuals resid2
2] 115,22 369 -5.86958] 34.45202]
| 3 | 135.98 4.39 7.743665 58.96435
4 119.34 475 125718 158.0503

ra

Next, regress residuals on income.

Regression El
Input
oK
Input ¥ Range: $0§1:40%41 k_
Input % Range: §B$1:$6541
Hel
Labels [[] Constant is Zera
[ Confidence Level: o
Qukput options
O Dukput Range: £
() Mew Workshest Pl LM Test
() Mew workbook
Residuals
[ Residuals [ residual Plats
[] Standardized Residuals [ Line Fit Plots
Tormal Probability
[] Mormal Probability Ploks

The test statistic (LM) is calculated by multiplying the N*R? and has a ’ , distribution.
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White’s test is just a minor modification to Breush-Pagan test. Add one more column to the data
and label it income2. This column will contain the squared income variable. After putting in the
formula and copying it down, regress resid2 on income and income2. Recall that you need to get
the income and income2 in adjacent columns to be able to run the regression. The test statistic is

& | B

1 |SUMMARY QUTPUT

2

3 Regression Statistics

4 |hultiple R 0.429663369
5 |R Square 0. 184610611
G [Adjusted R Sguare 01B3152996
7 |Standard Errar 8946 54205
g |Obszereations 40
9

10 [ANOWA

11 of

12 |Hegresg 1
13 |Residual 38
14 [Total 39
15

16 Coefficients
17 |Intercept N°R Square -5762.353535
18 |Income N\, | 582232583
19

20

21

22 Lh= 7.384424443
23 CHI-CRITICAL 3.841459149
24 P-wALLUE  0.0068573112

again the product of N and R* which has a ’ , distribution.
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A [ B ]
SUMMARY OUTPUT

Regression Statistics

Wultiple R 0.434559775
R Square 0.183875964
Adjusted R Sguare 0.145032476
Standard Error 10053.75429
Ohsemations 40
ARONWA
df

Regression 2
Residual 37
Total 38

Coefficients

Intercept -2908.75281

incormez2 11.16528894

Income 291 7457 265
N* R Square

LMW=T"7 555075561
CHI-CRITICAL 3.841459149
p-walue  0.2237893

FABIIBD B B PRI == | = = | = = == = | —

The results for both of the tests indicate a rejection of the null hypothesis of no heteroskedasticity.
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Dynamic Models, Autocorrelation,
and Forecasting

CHAPTER OUTLINE

9.1 Lags in the Error Term 9.4 Detecting Autocorrelation
9.2 Area Response for Sugar 9.4.1 The Durbin-Watson test
9.3 Estimating an AR(1) Model 9.4.2 An LM test

9.3.1 Least squares 9.5 Autoregressive Models

9.6 Finite Distributed Lags
9.7 ARDL Model

9.1 LAGS IN THE ERROR TERM

The multiple linear regression model of Chapters 5 and 6 assumed that the observations are not
correlated with one another. This assumption is not realistic if the observations are drawn
sequentially in time. With times-series data, where the observations follow a natural ordering
through time, there is a possibility that successive errors are correlated with each other. Shocks to
a model may take time to work out and effects may carry over to successive time periods. The
result is that the error term in period t can affect the error term in period t+1, or t+2, and so on.
Somehow, we must take these lasting effects into account.

In the first example the supply response for an agricultural crop is modeled as a log-log linear
model where area planted (acres) depends on price. The first dynamic model we will consider is
one with a lag in the error term.

|I’1(A) :B1 +B2 ln(Pt) +€

& =PtV

142
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Where p (rho) is the parameter that describes the relation between eand e _,, Vv, is the new
random error term. For stability (and stationarity) of the model, -1<p <1.

9.2 AREA RESPONSE FOR SUGAR

First, we will estimate the above mentioned model using least squares. Open bangla.xls.

e Label columns C and D as LN(P) and LN(A) respectively.
e Incell C2, type =LN(A2), copy this formula to cell D2.
e Highlight cells C2 and D2, and copy the formulas down the columns.

Microsoft Excel - bangla.xls

@_1 File Edit “iew Insert Format Tools Do
HRNER" NS = BSR4 N e

'@ = = ! ﬁSnagIt 1 | window
K3 - &
A | B | ¢ | D |
P a LHN{P) LN{A}
0.749 28.96 |=LMiA)  |=LN(EZ)
1.093 B7.81 00838926 421671
0.9z 55,15 -0.08333 4.010057
0.95 7862 -0.04032 4.364626
0912 B0.15 -0.09212) 4.096341

Estimate a regression, using LN(A) as the Y-Range and LN(P) as the X-Range. Include labels.
Check the Residuals option so that the estimated errors are produced and click OK.

Regression E|
Inpuk “
Input ¥ Range: FCH1CEIS k
Input ¥ Range: $D$1:40435
Hel
Labels [ Constant is Zera
[ corfidence Lewvel: %o

Oukput options
() Qukput Range: .
(%) New Workshest Ply: Area Response OLS
() New Warkboak

[ Residual Plats
[ standardized Residuals [] Line Fit Flots

Marmal Probabilicy
[ tormal Frobability Flots

The least squares estimates are:
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16 Cocfficients  ‘tandard Ere t Stat Pyalue
17 |Intercept 3.893285748 0.0613 B3 46485 3.12E-35
18 |LM{F) 0.776118781 0.2774 2797154 0.008653

Since we are using times-series data, we should explore the possibility of autocorrelation.
Visually, we can plot the residuals against time and see if we can detect any patterns.
Return to the worksheet containing the original data.

Label cell E1 t, for time.
Type “1” in cell E2.

Type =E1+1 in cell E3.
Highlight cells E2 and E3, place cursor on the lower right hand corner of the highlighted

area until it turns into a cross-hatch.
e Left-click and drag down the column to fill in the values in ascending order.

Microsoft Excel - bangla.xls

IE_] File Edit Wiew Insert Format  Tools  Daka  Window
HEN=N" RERE NN RN A - RN A
el H IS snaglt [ | window - H
E3 - & =E2+1

A [ e | ¢ | o | E |
1 P a LN{(P) LMN{A) t
| 2 | 0.749 2896 -0.28902| 3.365916 1
| 3 | 1.093 E7.81 0088926 4671 2-
N 052 5515 -0.08335| 4.010057 3
| 5 | 0.95 7862 -0.04082| 4 364626 4
| B | 0.912 G015 -0.09212| 4.095541 g
7 1.054 4554 0.052592| 3.818591 B
| 8 | 1.079 3362 0076035 3.515121 7
| 9 | 1.525 44 55 0.421994| 3.797285 3

Return to the worksheet containing the regression output.

Copy residuals to the worksheet containing the original data and Paste in column F.
e Create an XY Scatter graph with t on the horizontal axis and Residuals on the vertical

axis.

The results will look like

Residuals

0s

06

0.4

02

02

0.4

06

048

Time
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Looking at the values of the residuals (ehat) and at the graph above, there seems to be a tendency
for negative values to follow negative values, and positive values to follow positive values. This
is consistent with positive correlation between successive terms. While such a conclusion about
autocorrelation is subjective, we will later look at a more formal test. For now, however, it does
appear that there is a problem.

We can also check the correlation between the ehat and the lagged values. Rename the
residual column ehat, create a new column and call is ehat_1. Lag the ehat column by copying
F2-F35 and paste it to G3. Delete F2 and G36 to make the columns even. Go to Tools>Data
Analysis>Correlation. Put ehat and ehat_1 in the range and hit OK. The output indicates about
.40 correlation between the errors one period apart.

Fiy B C
1 ehat ehat 1
2 ehat 1
3 | ehat 1 |[0.403997 1

9.3 ESTIMATING AN AR(1) MODEL

When the errors follow and AR(1) model, e, =pe,_, +V,, the least squares assumption 4 is
violated. Least squares is unbiased and consistent, but no longer efficient. The reported standard

errors are no longer correct, leading to statistically invalid hypothesis tests and confidence
intervals.

9.3.1 Least Squares

In the previous chapter, we transformed our data so that we could move from a heteroskedastic
model to a homoskedastic. The same type of procedure can be used to correct for first order
autoregressive errors AR(1). Our objective is to transform the model

Y, =B, +B,X% +€ where e =pe_, +V,

such that the autocorrelated term e, is replaced by the uncorrelated error term v,. After some
substitution and rearranging, the transformed model we obtain is

yt - pyt—l = Bl(l_ p) + Bz (Xt _pxt—l) +Vt

All we need to do is to transform the dependent variable, intercept, and explanatory variable as
above and proceed with the generalized least squares estimation. The first problem is p is
unknown and must be estimated and observe that we now have T-1 observations since we lose the
"first" one.

Estimate the original model and store the residuals. Since
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and we already have our residuals from the least squares estimation, we're ready to go!
Return to the worksheet containing the original data and the residuals. Label cells G1, H1,
and 11 as sum(et*et-1), ssq(et-1), and rhohat respectively. In cell G2, type
=SUMPRODUCT(F3:F35,F2:F34)
This corresponds to the numerator in the formula above. In cell H2, type

=SUMSQ(F2:F34)

This calculates the denominator. Finally, in cell 12, divide G2 by H2 by typing =G2/H2. The
result is 0.3992.

E1 Microsoft Excel - bangla.xls

@_] File Edit ‘iew Insert Format Tools Data  Window Help  Adobe PDF
HANEA" BERE IR RN A N TR AR RN RS T AN I RN
'@ = = ! QSnagIt &' | Window - !

R21 - x

A | B C D F G H [

1 P a LN{P) LN{A) Residuals. sumiet®et-1) | ssqfet-1) | rhohat
2| 0749 2396 -0289 33639 1 -0.303 1.196873757 2.9979 03992
3| 1083 8781 00883 42167 2 02544
4| 092 5515 -0083 40101 3 01815
5 | 096 7862 -0041 43646 405031
B 0912 6015 -0092 40968 5 02751

Now, to deal with the issue of transforming the first observation for the transformed model, we
have y; = B; + X:B, + €; with an error variance of var(e;)=c> =G/ (1—p2) . The transformation

that gets to where we want (a variance of o) is multiplication of the terms in the model, for the

first observation, by 1-p° .
Use the worksheet with columns P, A, LN(P), LN(A). Label columns E, F, and G as y*, int*
and x* respectively.

E3 Microsoft Excel - bangla.xls

@_] File Edit Wew Insert Format Tools Data  wWindow Help  Adobe POF
INEHRSE S|V E SR FY -8 F - F]
‘@ == i@SnagIt [ | window - !
09 - f*

A | B [ ¢ [ b [ E | F | G |
1| P a LN{P) LN{A) Y INT* x*
2| 0749 2396 -0289 33659
3| 1083 65781 00889 42167
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e Incell E2, type =SQRT(1-(0.3992"2))*D2.
o Incell F2, type =SQRT(1-(0.3992"2)).
o Incell G2, type =SQRT(1-(0.3992"2))*C2.

The first observation for the transformed model is now complete. For the remaining observations:

o In cell E3, type =D3-(0.3992*D2).

e Incell F3, type =1-0.3992.

e Incell G3, type =C3-(0.3992*C2).

e Highlight cells E3 through G3. Copy the formulas down the columns.

A | B | ¢ [ D ] E | F | G

1 p a LN(P) | LN(8) 'S INT* X
2| 0749 2896 -0289 33659 =SQRT(1-(0.3992"2)D2 =SQRT(1-(0.3992"2)) =SQART(1-{0.3992"2)}*C2
3| 1093 6781 00889 42167 =D3-(03992°D2) =1-0.3992 =C3-(0.3992°C2)
4| 082 5515 -0083 40101

Run a regression, using y* as the Y-Range and int* and x* as the X-Range. Include labels as
usual AND suppress the intercept by checking the Constant is Zero box. Place output on a new
worksheet names GLS and click OK.

Input
o9
Input ¥ Range: $E$1:$E435 “k
Input ¥ Range: $F§1:$GH35
Hel
Labels Constant is Zero
[ confidence Level: %o

Cutput options
O Qutput Range:
(3) Mew Worksheet Ply: Gl
() New Workbook

i

| [ residual Plats
ized Residuals [ Line Fit Ploks

Mormal Probability
[] Mormal Probahility Plots

The generalized least squares results are:

15 Coefficients | Standard Error t Stat Fvalue
17 |Intercept 0 LA, FLA, LA,
18 |IMNT* 3873889527 0.081947116 0 47.27304313 3.50629E-31
19 |8 0945993569  0.240753509 3.929303356 0.0004270145

Once again, interpretations of the estimates are as usual. The price elasticity of sugar cane area
response seems to be one.
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9.4 DETECTING AUTOCORRELATION

We will consider two formal tests to test for the existence and extent of autocorrelation; Durbin
Watson and LM (Lagrange Multiplier) serial correlation tests. Both tests test the hypothesis Ho: p
= 0 versus the alternative Hy: p > 0. If p is zero, then no transformation is necessary and ordinary
least squares estimation is BLUE.

9.4.1 The Durbin-Watson test

The Durbin-Watson test statistic uses the residuals from the least squares procedure and is
closely related to p. The statistic is

T

Z(ét - ét—l)z
d=i2 —
&’

—

t=1

It is approximately equal to 2(1—p).

If the estimated value of p is zero, the Durbin-Watson test statistic equals 2. If the estimated
value of p is one, the Durbin-Watson test statistic equals 0. Therefore, a low value of the DW test
statistic suggests the null hypothesis should be rejected. The distribution of the DW test statistic
is difficult and Excel cannot compute the p-value associated with d, but tables are available for
performing the hypothesis test [see www.bus.Isu.edu/hill/poe], now called the Durbin-Watson
bounds test.

.
>(& ~6.,)" =sum of squared differences =SUMXMY2(F3:F35,F2:F34) = 3.54386803

Zéf = sum of squared residuals: = SUMSQ(F2:F35) = 3.0316

T
i

Using the formula above, we calculate the Durbin-Watson statistic to be d = 1.169 as follows:
The least squares residuals for bangle.xls are stored in cells F2:F35 in the spreadsheet. The
numerator and the denominator of the DW statistic can be obtained using the Excel functions
SUMXMY2, and SUMSQ, respectively.

The decision rule for the Durbin-Watson bounds test is

e if d > upper bound, fail to reject the null hypothesis of no serial correlation,

o if d <lower bound, reject the null hypothesis and conclude that positive autocorrelation is
present,

o if lower bound < d < upper bound, the test is inconclusive.
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With T=34 and K=2, the lower bound is 1.393 and the upper bound is 1.514. Since d < the lower
bound, we reject the null hypothesis that p is zero, and find evidence of positive autocorrelation.

9.4.2 An LM test

Another way to test for autocorrelation is to use test whether residuals are correlated with one
another using the LM test. This test is based on the auxiliary regression where you regress least
square residuals on the original regressors and lagged residual(s). If the auxiliary regression
explains sufficient variation in €, then we conclude there is autocorrelation.
Now, let’s see how it works in Excel. Return to the worksheet containing the original
data for bangla.xls, include the logs of the data, and the residuals.
o Insert a new column and label it lagged residuals.
o Write 0 into cell E2.
o In cell E3, type =G2, where G2 contains the first residual from the regression output and
copy the formula down the column.

A | B | ¢ | D | E | F
1 p a LM(A) Residuals LN{P} ' Lagged residuals
12| 0749 2396 33659 030302924 -0239 0
3| 1093 6781 421687 0254436593 00339 -0.30302924
4| 0892 5515 40101 0181515067 -0.083 0254436598
5| 08968 7862 43846 0503053127 -0.0M 0181515067
|6 | 0812 6015 40868 0275078133 -0.092 0503053127

Once we created the lagged values of the residuals, we can now run the regression, using
residuals as the Y-Range and LN(P) and lagged residuals as the X-Range. Since the explanatory
variables need to be next to each other, you will have to move some of the columns around. Do
NOT suppress the intercept and name the worksheet LM test. Click OK.

Regression g]
Input
ok

Input ¥ Range: $041:40435 .m
Input & Range: $E$1:$F435

Hel
Labels [] Constant is Zera
[ Confidence Level: 3

Cutput options

O Qutput Range: .
(3) News Worksheet Ply: LM test

() Mews Workbook,

Residuals

[ residuals [ residual Plaks

[ standardized Residuals [ Line Fit Plots

Mormal Probabilicy
[ Wormal Probabilicy Plots
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A | B | c | D ]
SUMMARY OUTPUT

Regrassion Statistics

1

2

3

4 |Multiple R 0.401259455

_5 |R Square 016100915

_ B |Adjusted R Square 0.106880708

_ 7 |Standard Errar 0.286438676

8 |Observations 34

9

10 |ANOYA

11 af 55 s
12 |Regression 2 0483110715 0244065357
13 |Residual 31 2543460566 0.052047115
14 |Tatal 33 3031571281

15

16 Coefficients | Standard Evror t Stat
17 |Intercept -0.00511623 0.057185589 -0.141927146
8 [LNFY 0.091E01353  0.260933516 0.351052325

—y
[inl

Lagged residuals 0407521387 0167202391 2439085245

Recall that Excel reports a p-value based on a two-tailed test. We would conclude that p > 0,
testing at the 5% level, but we cannot reject the null hypothesis Hy: p = 0 at the 1% level. The LM
scalar is calculated by N*R? where N and R? are the number of observations and the coefficient of

determination in the auxiliary regression and has a x(zl) distribution if the null hypothesis is true.

The test statistic value in this case is 34* 0.16=5.44 . Wwe reject the null hypothesis and conclude
that there is significant autocorrelation.

9.5 AUTOREGRESSIVE MODELS

In addition to incorporating lagged values of error term into a regression equation, we can add
lagged values of dependent and/or independent variables. Autoregressive models include lags of
the dependent variable as regressors. The AR(p) model has p lags of y, as regressors.

Yy =040y, +0,y, ,+.. 0.y, , +V,

We will use the inflation.xls to estimate an AR(3) model of inflation rate. Open the data file and
add three columns and label them INFLAGL, INFLAG2 and INFLAG3. Copy the INFLN column
and paste it to INFLAGL1 starting from cell G4, to INFLAG2 starting from cell H5 and finally to
INFLAGS3 starting from cell 16 as shown below.

A | e | ¢ | o | B | F | & | H T 1
' 1] YEAR  MONTH = WAGE PCWAGE CPI INFLN INFLAGT [INFLAGZ INFLAGE
| 2 | 1983 12 8.32 101.4
ER 1984 1 8.37 0.593163 102.1 0637963
4 | 1984 2 8.36 0.11955 1026 0.488521 0.6E7963
5 | 1984 3 8.4| 0.477328 102.3 0.291971 0.488521| 0687953
B | 1984 4 B.44 047505 103.3 0.387973 0.291971| 0.488521 0.6B7963
| 7 | 1984 5 8.43 011855 103.5 0.193424 0387973 0.291971 0488521
| B | 1984 B 8.47 0473374 1037 0.19305 0.193424| 0357973 0.231971

Then, estimate the model using INFLN as the Y-Range and INFLAG1 INFLAG2 and INFLAG3
as the X-Range variables. Since there area missing observations for each column, make sure to
start from row 6, the first row for which there are no missing observations.
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Input
Input ¥ Range: I e
Input ¥ Range: $ah6 15271
[ Labels [] Constant is Zera
[] Confidence Level: %
Cutpuk options
O Dutput Range: B
(&) Mew Workshest Ply: AR(3)
() Mew Workhook
Residuals
[ Residuals [] residual Plots
[ standardized Residuals [ Line Fit Plats
Maorrmal Prabability
[] Hormal Probability Plots
The result is:
A | B8 | C | o |
1 |SUMMARY OUTPUT
2
3 Regression Statistics
_ 4 |Multiple R 0.35957599
_5 |R Square 0125254593
B |Adjusted R Square 0119324957
_ 7 |Standard Errar 0197246727
8 |Observations 266
9
10 | ANDWA,
1 df 55 s
12 |Regression 3 1513669915 0.504556638
13 |Residual 262 1018344305 0.033906271
14 |Total 265 1170711296
15
16 Coefficients | Standard Eror t Stat
17 |Intercept 0188338077 0.0252904582 7 44557586
18 [INF_LAGT 0.373292594 0.061480581 B.071692822
18 |IMNF_LAG2 021791892 0.064472475| -3.380030331
20 INF_LAGS 0101254114 0081267995 1.B5264277

9.6 FINITE DISTRIBUTED LAG MODELS

Finite distributed lag models contain independent variables and their lags as regressors.
Yo =+ BoX +BiX y +B X, +et qut—q +V;

Using the inflation.xls, let’s model the inflation rate as a function of the percentage change in
wages and three lags of wages. Open the original file and add three columns. Label them
pcwage L1, pcwage L2 and pcwage L3. Copy the PCWAGE column and paste it to pcwage_L1
starting from cell F4, to pcwage_L2 starting from cell G5 and finally to pcwage_L3 starting from
cell H6 as shown below.
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A | e | c | b | E | F | G | H
1| YEAR | MONTH CP1 INFLN | PCWAGE pcwage_L1 pewage L2 pcwage_ L3
2| 1983 12 101.4
3| 1984 1 102.1) 06687963 0.599163
4| 1984 2 1026 0.488521 -0.11955  0.599163
| 5 | 1984 3 1029 0291971 0477328 -0.119546 0.599163
6| 1984 4 103.3 0387973 047506 0.477328) 0119546 0.595163
7 1984 5 1035 0193424 -0.11855 047506  0.477328 0119546
8| 1984 B 103.7) 019305 0473374 -0.118554 0.47506  0.477328
| B | 1984 7 104.1) 0384586 0471143 0473374 -0.118554 0.47506

Observe that we now have T — n complete observations since we lose observations when we
create the lags. Now run the regression with T — n observations.

Regression E]
Inpuk
Input ¥ Range: $D46:404271 B mk‘
Input ¥ Range: $E46:$HEETL| %
[ Labels [ Constart is Zera
[ confidence Lewvel: o
Cutput options
O Cukpuk Range: E
(%) New Workshest Ply: Distributed lag g=3
) New Workbaok
Residuals
[ Residuals [] Residual Plots
[] standardized Residuals [[] Line Fit Plats
Mormal Probability
[] Marmal Probahility Plaks
The least squares results are:
A | B | C | D | E \
|1 | SUMMARY QUTPLT
2
3 Regression Statistics
| 4 [Multiple R 0.22007857
| & |R Square 0.048434577
| B |Adiusted R Sguare | 0.033351193
| 7 |Standard Error 0.206596934
8 |Observations 266
El
10 | ANOWA
11 df 55 Ms F
| 12 |Fegression 4 0567029064 0141757266 3.321217936
| 13 |Residual 261 11.1400839 0.042682314
14 | Total 265 11.70711296
15
16 Coefficients | Standard Error t Stat F-value
| 17 |Intercept 0121873261 0.048654677 2.504852205 0.012560034
| 168 |powange 0.1560868848 | 0.088501629 1.763663336 0.078255262
| 19 |L1 010749781 0.085055032 1.263861846 0207407246
202 0.049485287 0.08525777 | 0.580419672 0.562132418
2103 0.199014534  0.087885431) 2.264476069 0.024355444
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9.6 AUTOREGRESSIVE DISTRIBUTED LAG MODELS (ARDL)

Finally, we consider a model that contains both finite distributed lags and is autoregressive.

Y, =0+ 0,X +0,X 4 +..+8quq +0,Y,,+6,Y., +...+epyFp +V,

ARDL (p, g) model has p lags of the dependent variable, y;and g lags of the independent variable
X Let’s illustrate ARDL (2,3) model for the inflation data. Modify the inlation.xls to incorporate
the two lags of INFLN and three lags of PCWAGE

A | e | ¢ | b | E | F | G | H [ 1
1 | YEAR | MONTH CPI INFLN |PCWAGE pcwage_L1 pcwage_L2 pewage L3 inf I1 inf_I2
2| 1983 12 101.4
3| 1954 1 102.1) D.687963 0.599163
4| 1984 2 102.6| 0.488521 011955  0.5991E3 0.6875963
| 5 | 1954 3 102.9) 0.291971 0.477328  -0.119546  0.599163 0.488521 0687963
B | 1984 4 103.3) 0387973 047506 0477328 0119546 0599163 0.291971 0.488521
7 1954 5 103.5) 0.193424 -0.11855 047506  0.4773258 0119546 0.387973 0.291971
8 | 1984 5 103.7) 019305 0.473374  -0.118554 047506 0.477328 0193424 0.387973
9] 1954 7 104.1) 0.384986 0.471143 0473374 -0.118554 0.47506) 0.19305 0.193424
10| 1984 g 104.4) 028777 0 0471143 0473374 -0.118554 0.384985 0.19305
1 1954 9 104.7) 0.286944  0.4568534 0 0471143 0473374 0.28777 035945956

Observe the missing observations due to lags. Run the regression starting from the 6™ observation
using the INFLN as Y-Range and PCWAGE, its three lags, and two lags of INFLN as the X-

Range
Inpuk
Ok
Input ¥ Fange: $D$0:§0E2T1 q
Input % Range: $E46:474271
Hel
[] Labels [] Constant is Zera
[ confidence Level: %
Oukput opkions
O Cutput Range: %
(%) New \Worksheet Ply: ARDL
() New Workbook
Residuals
[ residuals [] residual Flats
[] standardized Residuals [JLine Fit Plots
Marmal Probability
[ mormal Probability Plots

The least squares results are:
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A [ B C D E
| 1 |SUMMARY OUTPUT
2
3 Regression Statistics
| 4 |Multiple R 0.40504596
| 5 |R Square 016732157
| B |Adjusted R Square 0.148032029
| 7 |Standard Errar 0.134005303
8 |Observations 266
ER
10 [ AN
1 off 55 M F
| 12 |Regression 6 1958556029 0326476005 8674092797
| 13 |Residual 259 9748256934 0.0376533055
14 |Total 265 11.707 11296
15
16 Coefficlents | Standard Error t Stat FP-value
| 17 |Intercept 0.095876586 0.045805866 2.112437633 0.0356052
| 18 |PCWAGE 0114903242 0083320039 1.37790129 0.169423076
| 19 w1 0037733717 00812454658 0.464440859 0.642722064
| 20 w2 0055274631 0081173529 0.730221157 0.465214256
| 21 w3 0236130505 0.082944072 2.8468641585 0.004763852
| 22 |INFL1 0.353640184 0.06041118 5853886373 1.44819E-08
23 [INFLZ -0.197561316 0.06042121 -3.265734524  0.001222345
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CHAPTER OUTLINE

10.1 Least Squares with Simulated Data 10.6 Estimation using Mroz Data
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Simulated Data 10.6.2 Two-stage least squares
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10.3 The Hausman Test: Simulated Data

10.4 Testing for Weak Instruments: Simulated
Data

10.5 Testing for Validity of Surplus Instruments:
Simulated Data

10.1 LEAST SOUARES WITH SIMULATED DATA

When the explanatory variables are random, the relationship between x and the error term, e, is
crucial in deciding whether ordinary least squares estimation is appropriate. If x and e are
uncorrelated, then least squares can, and should, be used. However, if the cov(x, e) = 0, then the
least squares estimator is biased and inconsistent. In this case, instrumental variables (IV) / two-
stage least squares estimation process gives us a consistent but inefficient estimator. IV is not
directly available in Excel as a built-in function. However, we will show that it is easy to perform
IV estimation using Excel functions you are already familiar with.

We will use ch10.xls to explore the properties of the least squares estimator when cov(x, e) #
0. The data set contains simulated data of sample size 100, p, =0.6, where

E(y)=B,+B,x=1+1x and x;,e, ~ N(0,1).

First, get the summary statistics for the dataset where z;, z,, and zz are the instrumental
variables we will consider later. Go to Tools>Data Analysis>Descriptive Statistics

155
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Descriptive Statistics

Input
Input Range:

Grouped By

Labels in First Row

Cubput options

) Qutput Range:

(%) Mew Worksheet Ply:
) New Workbook

[ kth Largest:
[ kth smallest:

[] confidence Level For Mean:

$A41:4E$101 =
() Columnns

) Rows

%

Below is a sample of the descriptive statistics provided by Excel.

A | B [ ¢ [ o [ E [ F [ & | I

1 X IV z1 z2 73
| 2 |
| 3 |Mean 0.2391607 | Mean 1.3862871 Mean 0.0342065 Mean 01205652 Mean 0.052191
| 4 |Std. Dev. | 0.956B55153 | Std. Dev. | 1838518855 Std. Dev. | 0.893107752 Std. Dev. | 1.0278556892 Std. Dev. | 1.100089225
5 [Minimum -1.6484 Minimurn -2 96671 Minimum -2 61576 Minimurm -2. 29936 Minimum -2 98265
B |[Maximum 2 7BE28 |[Maximum B.72735 Maximum 2.09323 Maximum 2.10895 Maximurm 3.1457

7 |Count 100 Count 100 Count 100 Count 100 Count 100

Next estimate the simple regression of y on x using y as the Y-Range and x as the X-Range.
Choose the Residuals option for future reference and place the output in a worksheet named LSE

for random regress. Click OK.

Regression

Inpuk
Input ¥ Range:

Input ¥ Range:

Labels
[ corfidence Level:

oukput options
O Qukput Range:
() Mew Warkshest Ply:

() Mew Workbook,
Residuals

[] standardized Residuals

Marmal Probability
[ marmal Probability Plots

$B§1:$B$101

ad1:gAg101
D Constant is Zera
| |

|L5E for random regress |

] residual Flots
[ Line Fit Plots
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The results are:

A | B | C | D | E |

| 1 |SUMMARY OUTPUT

2

3 Regression Statistics
| 4 |Multiple R 0.88621922
| & |R Square 0.785354a05
| B |Adjusted R Square 0.783194551
| 7 |Standard Errar 0.856157533

8 |Observations 100

9
10 [ANCYA,

1 = 55 M F
| 12 |Regression 1 2529028697 2629028697 358.6305905
| 13 |Residual 98/ 71.84128144  0.7g743

14 |Tatal 95 3347441507

15

16 Coefficients | Standard Error t Stat P-value
| 17 |Intercept 0573353255 0.085230975 11.08835296 5.35253E-19
18 | 1703431396 0.0899429652 15.93754447 1.61396E-34

Notice that the estimated slope is 1.7, when in fact the true slope of the artificial data is 1. These
results are due to the correlation between the error term and explanatory variable that has been
built into the data.

10.2 INSTRUMENTAL VARIABLES ESTIMATION WITH SIMULATED DATA

Ch10.xls also contains two instrumental variables both of which are correlated to x yet
uncorrelated with the error term. Since our problem is that the explanatory variable we are using
is correlated with the error term, using these instrumental variables should help solve our
problem.

We will estimate a reduced form or 1% stage regression x; = o + a,z;; + € to obtain the
predicted values of x;, X.. Then, we use X as an instrumental variable in the equation y; = pB; +

B2 % + ;. Estimation of this equation is the "2" stage". Thus the name, 2-stage least squares.

Return to the worksheet containing the simulated data, ch10.xls. Run a regression, using x as
the Y-Range and z as the X-Range. Choose the Residuals option to obtain X;. Place output on a

worksheet names 1% stage.

Input
Input ¥ Range: $a51:ak101 “k
Input ¥ Range: $CE1$CFL0L
He|
Labels [] Constant is Zera
[[] confidence Level: e

Cutput options

O Cutput Range: B
(=) Mews Worksheet Ply: 1st stage|

() Mew Workboak

Residuals

Residuals [[] Residual Plats

[ standardized Residuals [ Line Fit Plats

Mormal Probability
[] Matmal Probability Ploks
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The "Predicted x" from the RESIDUAL OUTPUT is our instrumental variable.

A [ B | C | D |
1 [SUMMARY OUTPUT
2
3 Regression Statistics
4 |Multiple R 0633162714
_5 |R Square 0284251816
6 |Adjusted R Square 0.276945263
_7_|Standard Errar 0.81346731
8 |Observations 100
9]
10 |[ANOWA,
11 df 55 MS
12 |Regression 1 2575427204 2575427204
13 |Residual 95 64.54944826 0661729064
14 |Total 09 90060372029
15
16 Coefficients | Standard Errar t Stat
17 |Intercept 0.219625015  0.081408977 | 269757337
18 |z1 0.571088)95 0091541632 B.23B56255
19
20
21 |
22 |RESIDUAL CUTPUT
23 ‘
24 Chsenvation Fradicted x Residuals
25 1 0597543328 -1.279973328
2B 2 0E77518519 1.804551451

Copy cells B24 through B124 containing Predicted x over to the worksheet containing the
original data. Now run another regression, using y as the Y-Range and Predicted x as the X-
Range. Place output on a worksheet named 2™ stage.

The results of this Two-Stage Least Squares Estimation are:

Regression
Inpuk

Input ¥ Range: $E$1:$64101

Input % Range: $F$14FEL01

Labels [ Conskant is Zero
[ Confidence Level: o

Cukput opkions
() output Range:
(33 Mew Warkshest Ply:
(2 Mew wWorkbook
Residual

2nd stage

[ Standardized Residuals

Mormal Probability
[ Mormal Probability Ploks

ral

[ residual Plaks
[ Line Fit Plats

3
_op, |
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Microsoft Excel - ch10.xls

Eﬂ File Edit Wiew Insert Format  Tools  Data  Window  Help
PN E RSS9 8-S e
ﬁSnagIt ' | window - !
HE - 23
A | B | c | 0 |
| 1 |SUMMARY OUTPUT
2
3 Regression Statistics
| 4 [Multiple R 0.330755034
| 5 |R Square 0.109393925
| B |Adjusted R Square 0.100311159
| 7 |Standard Errar 1.7441545963
8 |Observations 100
ER
10 |ANOWA,
11 df 55 s
| 12 |Regression 1 36.62065034 36.62065034
| 13 |Residual 098 298.1235003 3.042076534
14 |Total 99 334.7441507
15
15 Coefficients | Standard Error t Stat
| 17 |Intercept 1.101101099 0.19281321 5.710713997
18 |Predicted x 1.192445082 | 0.343684882 3. 469538409

The IV estimate of the slope 1.19 is closer to the true value of 1 but the standard errors are
incorrect.

10.2.1 Correction of IV standard errors

In the simple linear regression model y, =8, +f,x +¢€ the 2SLS estimator is the least squares
estimator applied to y, =, +B,X +e where X is the predicted value from a reduced form
equation. So, the 2SLS estimators are

In large samples the 2SLS estimators have approximate normal distributions. In the simple
regression model

2
Iy (o)

B,~N Bz'ﬂ

The error variance o should be estimated using the estimator

~2 Z(yi_ﬁl_ﬁzxi)z

(e} =
28LS N — 2

x>
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with the quantity in the numerator being the sum of squared 2SLS residuals, or SSE,s; s. The
problem with doing 2SLS with two least squares regressions is that in the second estimation the
estimated variance is

63\"0” _ Z(yi _Bl _ﬁzii)
o N-2

The numerator is the SSE from the regression of y; on X;, which is SSErong.
Thus correct 2SLS standard error is

a 625,_5 = \/@ 6'23|_s
)R SR S

and the “wrong” standard error, calculated in the 2™ least squares estimation, is

2
) wrong _ wrong _ wrong
Sewrong (BZ ) - A - -

Given that we have the “wrong” standard error in the 2™ regression, we can adjust it using a
correction factor

~2

Oasis A Oyt A
Se(BZ ) = ~2 Sewrong (BZ ) == Sewrong (BZ )

cSwrong cSwrong

10.2.2 Corrected standard errors for simulated data

To correct the inflated standard errors and modify the t-statistic and p-value with the correct
standard error, return to the worksheet containing the original data.

Insert a new column and label it residuals=y—b1-h2x.

Calculate residuals using the coefficients from the 2SLS estimation. In other words, in
cell G2, type =y—-1.101101099-1.192445082*A2, where A2 contains the first observation
on x. Copy the formula down the column.

Label cell H1 sighat_2sls, cell H2 sighat_wrong, and cell H3 correction factor.

In cell 11, type =SQRT(SUMSQ(G2:G101)/98) where 98 is T-K. This cell calculates the
square root of correct mean of squared errors which is the sighat_2sls.

In cell 12, type =SQRT(3.042), where 3.042 is the wrong MSE and its square root it the
sighat_wrong..

In cell 13, type =11/12 which calculates the correction factor.
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A | B [ ¢ [ o [ E ] F [ G [ H | I ™
| 1| X y z1 22 z3 Predicted »  resuduals=y - b7 - A2x sighat_2sls =SORT(SUMSQ(G2:G101)/98)
| 2 | -066243) 055321 066175 -1.03449) -1.69049) 0.597543320 =B2-1.1011-1.1924*A2 sighat_wrong =50RT(3.042)
| 3| 24822 47472 080179 1.31019) 244266 0.677518519 0.68632472 correction factor =112
4| 014934 153093 195537 11287 0.90907 -0.897534093 0251756584 1
| 5| 04729 1.83448 -0.57638 0.44545 0.38953 -0.280864558 016942404
6 | -1.08408 -047212) 03553 056262 0.34793 0.016718079 -0.280551084

This is our correct model standard error.

A | B [ ¢ | b | E | F | G | H L

1 X y z1 22 23 Predicted x  residuals=y - bJ - B2x sighat_2sls 0.987177

| 2 | -0B8243 055321 0BE175 -1.03443) -1.69349) 0537543328 -0.840580465 sighat_wrong 1.744133

| 3| 24822 47472 080179 131019 2.44266 0.677518519 0.68632472 correction factor 0.565998
I 0.14934 1.53093 -1.95637 -1.1287 0.90907 -0.8597534098 0.251756934
|5 | 04729 183448 -DB76358 044545 038953 -0.280864558 0.16949404

Copy the correction factor, return to the worksheet 2™ stage and paste after the regression output.
Then, create the corrected standard errors by multiplying the current standard errors with the
correction factor. The correct t-stat will be obtained by dividing the coefficient estimates by the
corrected standard errors. And you can calculate the correct p-value by typing =TDIST(D20,98,2)
for a two-tailed test where D20 is the corrected t-stat.

Cosfficlents Standard Error t Stat
|Intercept 1101101095 0.19281321 5. 710713997
Predicted 1.192445032 0.343684832 3.459538409
:currectinn factor 0.565595844
Coofficiants Corrected Standard Error Corrected t Stat
|Intercept 1101101098 =+B21*C17 =B24/C24
Predicted x 1.192445082 =+C18*B21 =B25/C25

The results will be:

Coefficients Standard Ervor t Stat
Intercept 1.101101099 0. 19281321 5. 710713997
Predicted x 1. 192445082 0.343F34832 3. 489533405
correction factor 0.55599544

Coefficients Corrected Standard Error Corrected t Stat
Intercept 1101101059 0. 109131976 10.08962851
Predicted x 1192445082 0. 184525107 £.130031753

The correct t-stat and p-value are quite different from those reported originally by Excel.
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10.3 THE HAUSMAN TEST: SIMULATED DATA

Since we don’t always know if the explanatory variables are endogenous or not, we can
empirically check it using the Hausman test. We want to test Hy: cov(x, €) = 0 against the
alternative Hj: cov(x, e) = 0. The Hausman Test is a formal test of these hypotheses and can be
based on using the residuals from the 1% stage estimation of

X =71 +6,Z; + 6,2, +V;

Denote the least squares residuals from the reduced form as V,. Include them in an artificial
regression

Yi =B +B,X% +6\7i +&
Estimate this model by least squares and test the significance of V. using a standard t-test.

H,:8=0 no correlation between x and e
H, :6#0 correlation between x and e

If the null hypothesis is true, the ordinary least squares estimators are more efficient and should
be used. If the null hypothesis is not true, the instrumental variables estimator is consistent and
should be used.

Return to the worksheet containing the data ch10.xls. Estimate a regression, using x as the Y-
Range and z; and z, as the X-Range. Make sure to click the residual box to get the residuals.
Place the results on a worksheet named Hausman step 1.

Regression g]
Inpuk
QK
Input ¥ Range: $AsLdns10L
Input X Range: $CH1:404101
Hel
Labels [] constant is Zero
[ Confidence Lewvel: 3 %
Cukput options
O Oukput Range: %
(%) New Worksheet ly: Hausman step 1
() New Workbook
Residuals
Residuals [ residual Plots
[] standardized Residuals [ Line Fit. Plats

Tormal Probability
[ otmal Probability Ploks

Copy cells C25 through C125 which contain the Residuals to the worksheet containing the
original data and Paste. Move the columns x and Residuals together. Now, run the 2™ regression,
using y as the Y-Range and x and residuals as the X-Range. Place the results on a worksheet
named Hausman step 2. No need to store residuals for this step.
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Regression g]
Input
Input ¥ Range: $A$1:A5101
Input ¥ Range: $F$1:$G5101
Labels [] Constant is Zero
[ Confidence Level: £
Oubput options
O Cubput Range: 3
(%) Mew Worksheet Ply: Hausman step 2
) Mews Workbook,
Residuals
[ 1 residual Flots
[ standardized Residuals [ Line Fit Plats
Mormal Probability
[ narmal Probabilicy Plats
The regression output is:
& E | C | D |
1| SUMMARY CUTPUT
2
3 Regression Statistics
4 |Multiple R 0919262166
5 |R Square 0.54504253
| B |Adjusted R Square 0.841847939
| 7 |Standard Errar 0.731267595
8 |Obhszerations 100
| 9 |
10 [ANOWA,
11 of oty WS
12 |Regression 2 282873178 141.436589
| 13 |Residual 97 5187097263 04634752205
14 |[Total 99 3347441507
15
1B Coefficients | Standard Error t Stat
17 |Intercept 1.137500589 0079746437 14.26509615
18 |Residuals 09957282858 0162933301 £.111053161
19 |x 1.039871953  0.133013055 7.817818964

Based on the t-test of the coefficient on Residuals, we reject the null hypothesis of no correlation
between x and e, and conclude that instrumental variable estimation is the procedure in this case.

10.4 TESTING FOR WEAK INSTRUMENTS: SIMULATED DATA

Instrumental variables must be as strongly correlated with the endogenous variable as possible. A
standard rule of thumb is that they will at least have a t-statistic of 3.3 or F-statistic of 10 in the
reduced form regression.
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& | B | C | D |
1| SUMMARY QUTPUT
2
| 3 |Regression Statistics
|4 [Multiple R 0.2246167
| 5 |R Sguare 0.050452662
| B |Adjusted R Square 0.040763404
| 7 |Standard Errar 0.536E254039
| 8 |Ohservations 100
g
10 |ANOWA,
11 off 55 s
| 12 |Regression 1 4571198585 4.571198855
| 13 |Residual 93 86.03252141 0.8778BZ871
14 |Total 99 90.60372029
15
16 Coefficients | Standard Exor t Stat
| 17 |Intercept 0.213950552  0.024344497 2 267756666
18 |z2 0.209097976 0.031633243 2231900853

From the above output, t-statistic for the second instrumental variable is 2.28. Since the t-
statistics less than the rule of thumb of 3.3, usage of this instrumental variable may not yield
satisfactory results.

10.5 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS: SIMULATED
DATA

In addition to being strongly correlated with the endogenous variable, a “good” instrument needs
to be uncorrelated with the error term. We can test the validity of the instrument by an LM test.
LM test uses 2SLS residual €, , as the dependent variable, and all the available exogenous and

instrumental variables as independent variables. LM statistic is calculated from this regression by
LM = NR? which has x(zk) where Kk is the number of surplus instrumental variables. Estimate an

auxiliary regression using the é,; ; from the 2nd step of 2SLS estimation, y; = 1 + B2 X teias the
dependent variables and use instruments as the independent variable. The output is:

10.6 ESTIMATION USING THE MROZ DATA

We will use the Mroz data to illustrate the endogenous variables with real data. Open file
mroz.xls. This is a log-linear wage model on working woman.

IN(WAGE) = B, +B,EDUC + B,EXPER + B,EXPER? + &

10.6.1 Least squares regression

The data set includes observations for non-working women. To eliminate the non-working
woman, use the variable Ifp (labor force participation). Delete the rows where Ifp = 0. Next, create



Random Regressors and Moment-Based Estimation 165

Iwage =In(wage) and exper2=exper”2. Next, run the least squares regression model using the
Iwage as Y-Range and educ, exper, exper2 as X-Range. Include the labels, name the worksheet
LSE and check the residual box. The results are:

A | E | C | D |
1 [SUMMARY OUTPUT
2
3 Regression Statistics
4 [multiple R 0.395005544
5 |R Sguare 0.156520391
B |Adjusted R Sguare 0.150354493
_7 |=tandard Error 0.6BB420217
8 |Obsgervations 423
9|
10 | ANOA,
1 of 55 s
12 |[Regression 3 3602229655 11674059585
13 [Residual 424 188.30514359 0.444115905
14 |Tatal 427 2233274405
15
16 Coefficients | Standard Error t Stat
A7 [Intercept 0622040561 0198632065 -2.625178675
16 [educ 0107489635  0.01414478 7.598332013
19 [exper 0.041566511  0.013175128) 3.154905015
20 [experd -0.000811193 . 0.000393242 | -2 062533654

10.6.2 Two-stage least squares

In this example, educ is considered the endogenous variable as it could be correlated with factors
in the regression error term such as ability. In the 1% stage of the 2SLS estimation, we will
estimate the first one by using the educ as Y-Range and exper, exper2 and mothereduc (the
instrumental variable) as the X-Range. Keep the predicted values from the first stage to be used
in the 2" stage.

Observe that the mothereduc is a good instrument with a t-statistic of approximately 8.6 which is
greater than the rule of thumb of 3.3

A | B | C | D |
3 Regression Statistics
4 |[Multiple R 0390760937
5 |R Square 0. 15265411
B |Adjusted R Square 01466959021
| 7 | Standard Error 2111099613
8 |Observations 428
9 ]
10 [AMNOWA
11 oif 55 s
| 12 |Regression 3| 3405378336 1135126112
| 13 |Residual 424 1889 658428 4 456741576
14 (Tatal 427 2230196262
15
16 Coefficlents | Standard Error t Stat
17 | Intercept 977510268 0.423808615 0 23.06054547
|18 |exper 0.0488615 0.04166926  1.1726023007
19 |exper2 -0.0012810685 ) 0.001244906 -1.029045855
20 |mothereduc 0267690809 0.031129797 B.A99182717
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Estimate the 2™ stage regression by using the lwage as Y-Range and exper, exper2 and
predicted values of educ (from the previous regression) as X-Range.

A B | G | D
1 [SUMMARY QUTPLIT
2
3 Regression Statistics
4 |Multiple R 021351507
' 5 |R Square 0.045555655
' B |Adjusted R Square 0.035535775
7 |Standard Error 0.7058015788
g [Observations 428
N
10 | AMCOWA,
11 df 55 s
12 |Regression 31018120435 3.393734782
' 13 |Residual 424 N3.1462361 0.502703357
14 |Tatal A7 2233274405
15
18 Coefficients | Standard Error t Stat
17 |Intercept 0188186076 0.493342657 | 0.401720541
|18 |exper 0.0445555849 0.014164402 3166801513
|19 |exper2 -1.000922076)  0.000423969 -2.174B867605
20 |Predicted educ 0.049262951 | 0.039056201 1.261334918

Do not forget to modify the standard errors, t-statistics and the p-values are described in the
previous section. First we need to modify the model standard error.

Iwage wage educ mothereduc exper exper?2 fathereduc residuals= y-bi+d2expertblexper2tbdeduc

1210154 3.354 12
0328512 1.389 12
1514138 4546 12
0.092123 1.097 12
1524272 45820 14

12 14 196
7 5 25
12 15 225
7 5} 36
12 7 49

7
7
7
7
14

sighat_2sls
0.026442777 | sighat_wrong

0.678803546
0.709015515

-0.66205676 correction factor 0.957388847

0.259425652
0.933158549
0.367595506

Then, apply the new standard error to the coefficient standard errors, t-statistics and p-values.

Coefficionts Standard Error t Stat Fovalue
Intercept 01983186076 0493342657 | 04017202941 0.E33091317
EXpEr 0.0442553459 0014164402 3166301513 0001552599
BXpEr? -0.00092207 6 0.000423969 | -2 174867605 0.030192033
Predicted educ 00459252951 0.039055201) 1.261334918 0207881726
correction factor 0.957388347

Coefficionts Standard Error t Stat Fovalue
Intercept 0.19818607 5 0472320758 0419600605 0.E33091317
EXpEr 0.0442553459 0.01356084 3307748489 0001552599
exper? -0.000922075 0.000405303 | -2 27 1665909 0.030192038
Predicted educ 00459252951 0037391972 1.317474004 0207881726
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10.7 TESTING THE ENDOGENEITY OF EDUCATION

We will use Hausman test to test whether educ is endogenous and correlated to the regression
error term. First run the 1% stage regression using educ as the Y-Range and all other explanatory
variables as the X-Range. We only need the residuals from the 1% step to use as an additional
explanatory variable in the 2" stage. For the second stage, use the Iwage as the Y-Range and
educ, exper, exper2, and residuals as X-Range.

A | B [ C | D
SUMMARY OUTPUT

Regression Statistics

Multiple R 0402527346
R Square 0.162350446
Adjusted R Square 0.15442941
Standard Error 0.665015919
Obserations A28
ANOWA

df 55 Ms
Regression 4 36.25730963 9.064327408
Residual 423 187.0701308 0442245172
Total A27 2233274405

Coefficients | Standard Error t Stat

Intercept 0.045100303  0.354575257  0.121304001
educ 0.061396625  0.030934242 1.931495554
exper 0.044170324)  0.013232447  3.336271785
expers -0.000828%7| 0.000395813 -2.270B82285

| hd | — | —= | =] =] = —] =] =

Residuals -hausman 0.058166612  0.034507276 1.67 1104295

Based on the t-test of the coefficient on Residuals, we fail to reject the null hypothesis at 5% level
of no correlation between x and e, and conclude that OLS estimation is appropriate. However,
educ is endogenous at 10% level of significance.

10.8 TESTING FOR WEAK INSTRUMENTS

To test whether the relationship between the instruments and educ is strong enough, estimate the
restricted and unrestricted reduced form equations and test the joint significance of the
instruments. The unrestricted and restricted models have the following ANOVE tables:

10 [ANCWA

1 of e Ms F

| 12 [Regression 4 4?1.5?@@%117.9052496 283600288

| 13 [Residual 423 175857526 4,157380823

14 |Total 427 2230196262

15

16 Cogfficients | Standard Errar t Stat F-value

| 17 [Intercent 010264011 0426561367 21.32057927 4.09347E-69

| 18 [mothereduc 0157597023 0.025894116 4390609167 1.42084E-05

| 19 [exper 0045225473 0040250712 1123593117 0.261822538

| 20 [exper2 -0.001002021  0.00120P095 -0.838571743 0402183285
1 |fatheraduc 018954541 0033756467 5615173276 3.56151E-08
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AR OA,
off S5 Ms F

Regression 2001 0.9795%5.489936639 1.051372495
Residual 4250 221921628 5, 22168562
Total 427 2230196262

Coefficlents | Standard Errar t Stat P-value
Intercept 123509356 0.32231304%P 38.37664003 3.5283E-140
exper 0056491846 0045093499 1 262773616 0210976963
expers 0001904334 00013452280 -1 M16622479 0157618444

Using the MSE from the above models, to test the instruments jointly, we can conduct an F-test
where the unrestricted model has all exogenous variables and the restricted model has exper and
exper2 as the explanatory variables. Recall that the rule-of-thumb threshold value for adequate
instruments is an F-value of 10.0.

A [ B

| 1 |Hypothesis Testing - F-Test
|2 |
| 3 |Data Input
|4 J Z
| 5 | N 428
| B | 5
|7 | SEE-EESTRICTED 522168562
| 8 | SEE-UNEESTRICTED 4.15738833
R ALPHA 0.05
110 |
| 11 | Computed Values
112 df-numerator 2
Rkl di-denorminator 423
|14 | F 54.1443
| 15| Right Critical value 3.0170489203
| 16 | Decizion

17 p-value 1.15768E-21

10.9 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS

We can check the validity of the surplus instruments using the LM test. For this purpose, we need
to run an auxiliary regression where the residuals are the Y-Range and all the exogenous
variables are the X-Range. We calculate the LM test statistic as N*R? which is 0.3780714 for this
example.
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Simultaneous Equations Models

CHAPTER OUTLINE

11.1 Truffle Supply and Demand 11.4 Supply and Demand of Fish
11.2 Estimating the Reduced Form Equations 11.5 Reduced Forms for Fish Price and Quantity
11.3 2SLS Estimates of Truffle Demand and

Supply

11.3.1 Correction of 2SLS standard errors
11.3.2 Corrected standard errors in
truffle demand and supply

In this chapter, we estimate simultaneous equation models where there are two or more
dependent variables that need to be estimated jointly. Ordinary least squares estimation is not
possible when we are dealing with more than one equation. For example to explain both price and
guantity of a good, we need both supply and demand equations which work together to determine
price and quantity jointly.

11.1 TRUFFLE SUPPLY AND DEMAND

Consider the supply and demand for truffles:

Demand: Q, = a, +a,P, +a,PS; +a,DI, +¢'

Supply: Q, =P, +B,P, +B,PF, +€

In the demand equation, Q is the quantity of truffles traded at time (in ounces) P is the market
price for truffles in dollars per ounce, PS is the market price for substitutes for truffles in dollars
per pound, and DI is the per capita disposable income, in thousands of dollars. In the supply
equation, PF is the price of the factor of production. P and Q are endogenous variables meaning
their values are determined within the system of equations. The equilibrium levels of price and

169
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guantity, P* and Q* are determined by both of these equations. PS, DI, PF are exogenous
meaning that we take the values as given.
Open truffles.xls and obtain the summary statistics. Part of the print out is given below.

A | B | C | O | E | F

1 p g ps di pf

2

3 |Mean B272400013 18.45833333 220220001 3.52696BBGY 227533334
4 |Standard Deviation | 18.72346182 4.513087857 | 4.077237313) 1.040803254| 5.329653559
5 |Minimum 29539993 B.37 15.21 1.525 10.52
B |Maximum 105.449397 28.27 25.98 5.125 34.0093598
7 |Count 30 30 30 30 30

11.2 ESTIMATING THE REDUCED FORM EQUATIONS

The reduced form equation expresses each endogenous variable, P and Q, in terms of the
exogenous variables PS, DI, PF. This can be accomplished by setting the structural equation
equal to each other and solving for the endogenous variables.

Q =my, +m,, PS, +my, DI, + 1, PF +v,
P =n, + n,,PS, + n,,Dl, +n,,PF, +v,,

These equations can be estimated by least squares since all independent variables are exogenous
and uncorrelated with the error terms. We will estimate two regressions for the reduced form
equations. Once we estimate these reduced form equations, we will obtain and store the predicted

values of price, P, and then estimate the structural equations using P and the other exogenous
variables using the 2SLS technique which was first introduced in Chapter 10.

First, estimate the quantity equation using Q as the Y-Range, and PS, DI and PF as the X-
Range. Include labels and place results on the worksheet named reduced eq quant and Click
OK.

Regression EJ
Inpuk
Ok
Input ¥ Range: $E$1:48431 —k
Input & Range: $C414ES3L
Hel
Labels [] comstant is Zera
[ corfidence Level: %y
Cutput aptions
B

() Qutput Range:
(%) Mew Workshest Ply:

() Mew Workbook
Residuals

L

rormal Probabilicy
[ Marmal Probability Ploks

reduced eq guant

[ residual Plats
[ Line Fit Plots
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Next, estimate the regression for the price equation using P as the Y-Range and PS, DI and PF as
the X-Range. Include labels and place results on a worksheet named reduced eq price. Make

sure to include Residuals option to obtain the P and click OK.

e
Input ¥ Range: tat1:4a431
anicel
Input ¥ Range: $CH1$ES3L
Labels [] Constant is Zero
[] confidence Level: o
Cubput opkions
O Qukput Range: | E
(%) New Worksheet Ply: [reduced e_
O Mew Workbook
Is [ residual Piots
[ standardized Residuals [ Line Fit Ploks
Mormal Probability
[ mormal Probahility Plots
The Quantity (Q) reduced form estimates are:
1B Cosfficients | Standard Eror t Stat F-value
| 17 |Intercept 7895100328 3243421325 2.434183944 00220993352
18 |ps 0656402011 0142537596 4.605114937 | 9.53266E-05
18 [di 267156078 0700473729 3.093343477 0004550302
0 | pf 0506552392 0121261645 -4.180896549 ) 0.000291251
The Price (P) reduced form estimates are:
16 Coefficients | Standard Eror b Stat P-valye
17 |Intercept -32 512420160 7984235233 -4.07207691% 0.000387305
18 |ps 1.708147148 0350880625 4.868171757 4 75302E-05
19 |di FB02492026  1.724335664 0 4.4089397365  0.000159932
20 | pf 1.353005695 02958506239 4 535602665 0.000114523

All explanatory variables in both models are significant.

11.3 2SLS ESTIMATES OF TRUFFLE DEMAND AND SUPPLY

To obtain 2SLS estimates, we replace P in the structural equation with P from the reduced form
equation. To accomplish that, return to the worksheet containing the original data. Create an
empty column next to the other explanatory variables as Excel requires all explanatory variables
to be next to each other. Return to the reduced eq price worksheet and Copy cells B26 through
B56 (Predicted p) to the original data worksheet. Estimate a regression of the structural demand
equation using Q as the Y-Range and Predicted p, PS and PF as the X-Range. Include labels
and place results on the worksheet named stage 2 demand.
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Regression
Inpuk
Input ¥ Range:

Input ¥ Range:

Labels
[ Confidence Level:

Cutpuk opkions
O Qutput Range:
(%) New Waorkshest Ply:
) Mew Workbook

Residuals

[ Residuals
[ standardized Residuals

Mormal Probability
[ Warmal Probability Plots

X
4B 1:4B431
-C |
$CH14ES3 =
I:‘ Constant is Zero
%
B

stage Z demand

[ residual Plots
[ Line Fit Flots

Return to the worksheet containing the original data. Move the columns around so that phat and
PF are next to each other to estimate the structural supply equation since Excel requires the X-
Range data to be contiguous. Estimate the regression, using Q as the Y-Range and Predicted p,
and PF as the X-Range. Include labels and place results on a worksheet names stage 2 supply.

Regression f@
-
Input ¥ Range: $EE1:4E551
Input % Range: $ES14F$31
Labels [] Constant is Zero
[ confidence Level: o
Cutpuk options
O Oubput Range: % %
(@) Mew Warksheet Ply: stage Z supply|
() Mew Workbool
Residuals
[ residuals [ residual Flaks
[] standardized Residuals [ Line Fit Plaks
Mormal Probability
[ mormal Probabiliey Ploks
The 2™ stage regression results for demand equation are:
16 Coefficients | Standard Eror b Stat Fvalue
17 |Intercept -4 27947379 301358337480 1. 41994338 0167504525
18 |ps 1.296033361 0193094429 6711914817 4. 02707 E-07
19 |di 5.013978871 1.241414409 4 03892435337 0.0004223552
20 |phat 0374459162 0.089564321 ) -4.180856549 1 0.000231251

The results for supply equation are:
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16 Coefficients | Standard Error t Stat P-value

17 |Intercept 20.03280279 2165698376 9200042857 7.35757E-10
18 |phat 0.337931554 004412361 | 7.BE9579835  3.07433E-03
19 | pf -1.000909364 | 0146127429 5849565273 2 .33304E-07

Since the model standard error is based on the LS residuals, the standard errors, t-statistics and
confidence intervals are incorrect. Since Excel doesn’t have a built in function for these errors,
we will need to do some calculations. The calculation is explained in the next section.

11.3.1 Correction of 2SLS standard errors

In the simple linear regression model y, =B, +B,X +¢, the 2SLS estimator is the least squares
estimator applied to y, =B, +B,X +€ where X is the predicted value from a reduced form
equation. So, the 2SLS estimators are

Bz _ Z()A(l _7)(yi _7)
(% -%)’
ﬁl =y- AZY

In large samples the 2SLS estimators have approximate normal distributions. In the simple
regression model

The error variance o® should be estimated using the estimator

. Z(yi_ﬁl_ﬁzxi)z

(e) =
28LS N _ 2

with the quantity in the numerator being the sum of squared 2SLS residuals, or SSE,s s. The
problem with doing 2SLS with two least squares regressions is that in the second estimation the
estimated variance is

52 _Z(yi_ﬁl_BZ)’zi)

wrong N -2

The numerator is the SSE from the regression of y; on X;, which is SSErong.
Thus correct 2SLS standard error is
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~ 6§SLS v 6§SLS Oysis
se(B, )= ~ 2 7 - 2
( ) 2(% %) \/Z(f(. -X) \/Z(Xi -X)

and the “wrong” standard error, calculated in the 2™ least squares estimation, is

rong _ wrong _ Gwrong

X)X (% -xF (R -%)

Given that we have the “wrong” standard error in the 2™ regression, we can adjust it using a
correction factor

=N

~ G

S€urong (Bz ) = z(

x>

A2 R

Gasis A Oysis
Se(f’z) = ~2D Sewrong (Bz) == Sewrong (Bz)

(¢ (¢

wrong wrong

11.3.2 Corrected standard errors in truffle demand and supply

The first step to correcting the standard errors is to calculate the sigmahats of the 2SLS for both
the supply and demand equations. As in the previous chapter, go back to the origina