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PREFACE 

This book is a supplement to Principles of Econometrics, 3rd Edition by R. Carter Hill, William 
E. Griffiths and Guay C. Lim (Wiley, 2008), hereinafter POE. This book is not a substitute for 
the textbook, nor is it a stand alone computer manual. It is a companion to the textbook, showing 
how to perform the examples in the textbook using Excel 2003. This book will be useful to 
students taking econometrics, as well as their instructors, and others who wish to use Excel for 
econometric analysis.  

 
In addition to this computer manual for Excel, there are similar manuals and support for the 
software packages EViews, Excel, Gretl, Shazam and Stata. In addition, all the data for POE in 
various formats, including Excel, are available at http://www.wiley.com/college/hill.  
 
Individual Excel data files, errata for this manual and the textbook can be found at 
http://www.bus.lsu.edu/hill/poe. Templates for routine tasks can also be found at this web site. 

 
The chapters in this book parallel the chapters in POE. Thus, if you seek help for the examples in 
Chapter 11 of the textbook, check Chapter 11 in this book. However within a Chapter the sections 
numbers in POE do not necessarily correspond to the Excel manual sections.  

 
We welcome comments on this book, and suggestions for improvement. * 

 
 

Asli K. Ogunc 
Department of Accounting, Economics and Finance 

Texas A&M University-Commerce 
Commerce, TX 75429 

Asli_Ogunc@tamu-commerce.edu 
 

R. Carter Hill 
Economics Department 

Louisiana State University 
Baton Rouge, LA 70803 

eohill@lsu.edu 
. 

 
* Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. Our use does not directly or indirectly imply 
Microsoft sponsorship, affiliation, or endorsement.  
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CHAPTER  1 

Introduction to Excel 

CHAPTER OUTLINE 
1.1 Starting Excel 
1.2 Entering Data 
1.3 Using Excel for Calculations  
 1.3.1 Arithmetic operations 
 1.3.2 Mathematical functions 

1.4 Excel Files for Principles of Econometrics 
 1.4.1 John Wiley & Sons website 
 1.4.2 Principles of Econometrics website 
 1.4.3 Definition files 
 1.4.4 The food expenditure data 

1.1 STARTING EXCEL 

Start Excel by clicking the Start menu and locating the program, or by clicking a shortcut, such 
as, 

 
 
Excel opens. Click on the New Workbook icon. 

 
 
The worksheet looks like this 
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There are lots of little bits that you will become more familiar with as we go along. The active 
cell is surrounded by a border and is in Column A and Row 1. We will refer to cells as A1, B1 
and so on.  

Across the top of the window is a Menu bar. Sliding the mouse over the items opens up a 
pull down menu, showing further options. 

 
 
Perhaps the most important of all these is Help.  
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Microsoft Office has a cute (or annoying) feature. You can have a little assistant showing on the 
screen. If you click your assistant you can type in a question or search. 

 
 
If you right-click on the critter you can choose to hide him or change is personality. We will hide 
him. 

 
 
The Standard Toolbar has the usual Microsoft functions New, Open, Save, Print, Print 
preview, Copy and Paste. The AutoSum key is a feature of Excel¸ and the Sort buttons allow 
you to order data according to the magnitude of one of your columns. 

 
 
The Formatting Toolbar has the usual functions. The use of Grid lines can clarify a worksheet, 
as can the use of colored fonts and filling in cells for emphasis. 
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1.2 ENTERING DATA 

We will use Excel to analyze data. To enter data into an Excel worksheet move the cursor to a 
cell and type. First enter X in cell A1 and Y in cell B1. Navigate by moving the cursor with the 
mouse, or use the Tab key to move right or left, or Arrow keys to move right, left, up or down. 

 
 
In A2, enter the number 1. Press Enter and it will take you to the next cell, fill in the rest as 
shown. 

 
 
To nicely center the data in the cells, highlight cells A1:A6. There are several ways to highlight 
the cells. For small areas the easiest way is to place cursor in A1, hold down the left mouse button 
and drag it across the area you wish to highlight. For larger areas, using a key-stroke combination 
is very convenient. 

 
• To highlight a column—place cursor in A1. Hold down Ctrl-key and Shift-key 

simultaneously, which we will denote as Ctrl-Shift. Press the down arrow ↓ on the 
keyboard. 

• To highlight a row—place cursor in A1. Press Ctrl-Shift and right arrow → on the 
keyboard. 



Introduction to Excel   5 

• To highlight a region—place cursor in A1. Press Ctrl-Shift then the down arrow and 
then the right arrow. 

 
After selecting A1:A6, click Center 

 
 
The result is 

 
 
Repeat this process for B1:B6. This centering is just for appearance, and has no affect on any 
functionality. 

 
 
To highlight the entire worksheet, click the square in the upper left corner. 
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1.3 USING EXCEL FOR CALCULATIONS 

What is Excel good for? Its primary usefulness is to carry out repeated calculations. We can add, 
subtract, multiply and divide; and we can apply mathematical and statistical functions to the data 
in our worksheet. To illustrate, highlight Columns A & B, down to row 7, as shown below. Click 
AutoSum. This will sum the rows and place the sum in the final row. 

 
 
The result its 

 
 
Carry out a similar sequence of steps to sum the columns. Highlight rows 2:6 and columns A:C. 
Click AutoSum. 

 
 
The column sum (X + Y) is now in column C. 
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To Insert Columns hold the cursor over the A in column A. The cursor turns into a down arrow 
and the entire first column is highlighted. 

 
 
On the Excel Menu select Insert/Columns. This will insert a new column to the left of the 
highlighted column.  

 
 
Enter a column head, which will serve to identify what is in the first row, and enter “Sum” to 
identify the contents of row 7. 
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Add a header in column D. 

 

1.3.1 Arithmetic operations 

Standard arithmetical functions are defined as follows (from Excel Help, type arithmetic 
operators) 
 

Arithmetic operators: To perform basic mathematical operations such as 
addition, subtraction, or multiplication; combine numbers; and produce numeric 
results, use the following arithmetic operators. 

 

Arithmetic operator Meaning (Example) 
+ (plus sign) Addition (3+3) 
– (minus sign) Subtraction (3–1)Negation (–1) 
* (asterisk) Multiplication (3*3) 
/ (forward slash) Division (3/3) 
% (percent sign) Percent (20%) 
^ (caret) Exponentiation (3^2) 

 
To create a new variable Y2, select cell E2 and enter the formula =C2^2. This command instructs 
Excel to square the value in cell C2. 

 
 
The new value is Y2 = 4. Select this cell, and click Copy (or the shortcut Ctrl+C) 
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The border of the cell begins to rotate. Move the cursor to the lower right corner of the cell until 
the “plus” sign appears.  

 
 
Hold the left mouse button down and drag the plus down to cell E6. 

 
 
Release the left button and you will find the new values of Y2. What you have done is Copy the 
formula in E2 to the new cells, and Excel calculates the square of each Y value. 

1.3.2 Mathematical functions 

There are a large number of mathematical functions, most of which you will never use. Find the 
right function is fairly simple using Help. Search for math functions. 

 
 
Among the results returned is “Find functions and enter arguments” which is an online training 
session video, which you might find useful. 
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Another entry is “List of worksheet functions”. A partial list of the functions available is listed on 
the next page. These are taken from the Excel help result. 
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Math and trigonometry functions 

Function Description 

ABS Returns the absolute value of a number 

CEILING Rounds a number to the nearest integer or to the nearest multiple of significance 

COMBIN Returns the number of combinations for a given number of objects 

EVEN Rounds a number up to the nearest even integer 

EXP Returns e raised to the power of a given number 

FACT Returns the factorial of a number 

FACTDOUBLE Returns the double factorial of a number 

FLOOR Rounds a number down, toward zero 

GCD Returns the greatest common divisor 

INT Rounds a number down to the nearest integer 

LCM Returns the least common multiple 

LN Returns the natural logarithm of a number 

LOG10 Returns the base-10 logarithm of a number 

ODD Rounds a number up to the nearest odd integer 

PI Returns the value of pi 

POWER Returns the result of a number raised to a power 

PRODUCT Multiplies its arguments 

QUOTIENT Returns the integer portion of a division 

RAND Returns a random number between 0 and 1 

RANDBETWEEN Returns a random number between the numbers you specify 

ROUND Rounds a number to a specified number of digits 

ROUNDDOWN Rounds a number down, toward zero 

ROUNDUP Rounds a number up, away from zero 

SERIESSUM Returns the sum of a power series based on the formula 

SIGN Returns the sign of a number 

SQRT Returns a positive square root 

SQRTPI Returns the square root of (number * pi) 

SUBTOTAL Returns a subtotal in a list or database 

SUM Adds its arguments 

SUMIF Adds the cells specified by a given criteria 

SUMPRODUCT Returns the sum of the products of corresponding array components 

SUMSQ Returns the sum of the squares of the arguments 

SUMX2MY2 
Returns the sum of the difference of squares of corresponding values in two 

arrays 

SUMX2PY2 Returns the sum of the sum of squares of corresponding values in two arrays 

SUMXMY2 Returns the sum of squares of differences of corresponding values in two arrays 

TRUNC Truncates a number to an integer 
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Of course there is no way to remember all these. Again however Excel makes the functions easy 
to use. There is an Insert Function (or Paste Function) button. 

 
 
Create a new heading in F1, LOGY, which will contain the natural logarithm of Y. All logs used 
in POE are natural logs. Highlight F2 and click Insert Function. 

 
 
The Insert Function dialog box opens. Type in a description of the function you want, and press 
Go. 

 
 
Excel will return some suggestions. Scroll down the list and note that the definitions of the 
functions appear at the bottom. 
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Click OK. A Function Arguments dialog box opens. Enter the number you wish to take the 
logarithm of, or to locate a cell click on the Data range box. 

 
 
With this box open select the cell C2. This enters the command =LN(C2) into F2. Press Enter. 

 
 
Back in the Function Arguments dialog box we find that the natural log of 2 is 0.693. Click OK. 
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The value is returned to the worksheet in F2. Once again we can Copy the formula to compute 
the natural log of the remaining Y values.  

 

 
 
Once you know the function you wish, you can of course just enter the formula into a cell and 
press Enter. 

 
 
Now that you have put lots of effort into this example, it is a good idea to save your work. On the 
Excel Menu bar, select File/Save as 
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In the resulting dialog box, find the folder in which you plan to save your work for POE. We will 
use the path c:\data\excel. The standard extension for Excel files is *.xls. Name the file and click 
Save. 

 

1.4 EXCEL FILES FOR PRINCIPLES OF ECONOMETRICS 

The book Principles of Econometrics, 3e, uses many examples with data. These data files have 
been saved as workbooks and are available for you to download to your computer. There are 
about 150 such files. The data files and other supplementary materials can be downloaded from 
two web locations. You should download not only the *.xls files, but also the definition files, 
which have the extension *.def. Download these files from either the publisher John Wiley and 
Sons, or from the book website maintained by the authors.  

1.4.1 John Wiley and Sons website 

Using your web browser enter the address www.wiley.com/college/hill. Find, among the authors 
named “Hill” the book Principles of Econometrics. 
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Click on the book title and follow the link to Supplements. Click on Supplements. There you 
will find links to many supplement materials, including a link that will allow you to download all 
the data files at once. 

1.4.2 Principles of Econometrics website 

Alternatively, you may wish to download individual files.  
 
• Go to the site www.bus.lsu.edu/hill/poe for the data, errata and other supplements.  
• For the Excel data files go to www.bus.lsu.edu/hill/poe/excel.htm. 

1.4.3 Definition files 

There is a data definition file for each data file used in the book. These are simple “text” or 
“ASCII” files that can be opened with utilities like Notepad or Wordpad, or a word processor. 
Locate food.def. Its contents are: 
 
food.def 

 

food_exp income   

 

  Obs:   40 

 

  1. food_exp (y)                  weekly food expenditure in $ 

  2. income   (x)                  weekly income in $100 

 

 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

    food_exp |        40    283.5735    112.6752     109.71     587.66 

      income |        40    19.60475    6.847773       3.69       33.4 

 
The definition files contain variable names, variable definitions, and summary statistics. 

1.4.4 The food expenditure data 

In the first few chapters you will use data on household food expenditure. Locate the file food.xls 
and open it. To illustrate, click on the Open icon on the Menu. 

 
 

Navigate to the file you wish to open. 
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The worksheet should appear as 

 
 
So as to not alter the original file, you may want to save the file with a new name, such as 
food_chap01.xls. Select File>Save As from the Excel Menu. 

 
 
In the dialog box enter 
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Compute the summary statistics, to make sure they match the ones in food.def. Select 
Tools>Data Analysis. 

 
 
In the resulting dialog box choose Descriptive Statistics, then OK. 

 
 
In the Descriptive Statistics dialog box we must enter the Input Range of the data. Click on the 
Data Range box.  

 
 
The following box will open. 

 
 
While it is open, highlight columns A & B, rows 1 to 41. You can do this by 

 
• Click A1, hold down left mouse button, and drag over desired area; or 
• Click A1, hold down Ctrl+Shift. Press right arrow → and then down arrow ↓. 
 

In the resulting window click the Data Range box again. 
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Note that now the input range is filled in.  

 
• The Excel data range is $A$1:$B$41. This range locates the upper left corner of the 

highlighted area (A1) and lower right corner (B41). The $ makes this an Absolute Cell 
Reference, that will not be changed if the data are moved. 

• Tick the box Labels in First Row so that these cells will not be treated as data. 
• Select the radio button New Worksheet Ply and enter a name for the new worksheet 

page. 
• Tick the box Summary Statistics so that Excel will print the results. 
 

Click OK 

 
 
The resulting worksheet is not formatted well. Select Format>Column>AutoFit Selection 
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One of the nice things about Microsoft Office is that information from one application can be 
transferred to another. With the Descriptive Statistics highlighted, enter Ctrl+C to copy. In an 
open document enter Ctrl+V to paste. 
 
Now you have a nice table of statistics in your document that can be edited in the usual way. 

 
food_exp   income   

Mean 283.5734993 Mean 19.60475005 
Standard Error 17.81551026 Standard Error 1.08272795 
Median 264.479996 Median 20.0299995 
Mode #N/A Mode #N/A 
Standard Deviation 112.6751802 Standard Deviation 6.847772819 
Sample Variance 12695.69623 Sample Variance 46.89199259 
Kurtosis -0.002430221 Kurtosis 0.48455582 
Skewness 0.511465877 Skewness -0.651185498 
Range 477.949974 Range 29.710002 
Minimum 109.709999 Minimum 3.69 
Maximum 587.659973 Maximum 33.400002 
Sum 11342.93997 Sum 784.190002 
Count 40 Count 40 

 
You may wish to save this file by clicking  

 
 
The food expenditure data will be used extensively in the next chapter. 
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CHAPTER  2 

The Simple Linear Regression 
Model 

CHAPTER OUTLINE 
2.1 Plotting the Food Expenditure Data 
2.2 Estimating a Simple Regression 
2.3 Plotting a Simple Regression 

2.4 Plotting the Least Squares Residuals 
2.5 Prediction Using Excel 

 
In this chapter we introduce the simple linear regression model and estimate a model of weekly 
food expenditure. We also demonstrate the plotting capabilities of Excel and show how to use the 
software to calculate the income elasticity of food expenditure, and to predict food expenditure 
from our regression results. 

2.1 PLOTTING THE FOOD EXPENDITURE DATA 

We will use Chart Wizard to scatter plot the data. Open food.xls file in Excel.  
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Place the cursor on the Chart Wizard icon and click. In the dialog box, choose the chart type as 
XY (Scatter) and click next. 

 
 

To define the Data Range, highlight the data after clicking on the space provided. 

 
 
Select the data columns and click Data range again 

 

Aside: Referencing Cells 

Select Help. Search the phrase “Cell Reference.” One of the resulting hits is 
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Click this link to find the following description of cell references: 

 
A reference identifies a cell or a range of cells on a worksheet and tells Microsoft Excel where to 
look for the values or data you want to use in a formula. With references, you can use data 
contained in different parts of a worksheet in one formula or use the value from one cell in 
several formulas. You can also refer to cells on other sheets in the same workbook, and to other 
workbooks. References to cells in other workbooks are called links. 

 
The A1 reference style 

 
By default, Excel uses the A1 reference style, which refers to columns with letters (A through IV, 
for a total of 256 columns) and refers to rows with numbers (1 through 65536). These letters and 
numbers are called row and column headings. To refer to a cell, enter the column letter followed 
by the row number. For example, B2 refers to the cell at the intersection of column B and row 2. 

 
To refer to Use 

The cell in column A and row 10 A10 

The range of cells in column A and rows 10 through 20 A10:A20

The range of cells in row 15 and columns B through E B15:E15

All cells in row 5 5:5 

All cells in rows 5 through 10 5:10 

All cells in column H H:H 

All cells in columns H through J H:J 

The range of cells in columns A through E and rows 10 through 

20 
A10:E20

 
Reference to another worksheet    In the following example, the AVERAGE worksheet 
function calculates the average value for the range B1:B10 on the worksheet named Marketing in 
the same workbook. 

 

 

 
Note that the name of the worksheet and an exclamation point (!) precede the range reference. 

Aside: Relative vs. Absolute References 

On the same Help page, you will find the following useful information: 
 

The difference between relative and absolute references 
 
Relative references    A relative cell reference in a formula, such as A1, is based on the relative 
position of the cell that contains the formula and the cell the reference refers to. If the position of 
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the cell that contains the formula changes, the reference is changed. If you copy the formula 
across rows or down columns, the reference automatically adjusts. By default, new formulas use 
relative references. For example, if you copy a relative reference in cell B2 to cell B3, it 
automatically adjusts from =A1 to =A2. 

 
 

Copied formula with relative reference 
Absolute references    An absolute cell reference in a formula, such as $A$1, always refer to a 
cell in a specific location. If the position of the cell that contains the formula changes, the 
absolute reference remains the same. If you copy the formula across rows or down columns, the 
absolute reference does not adjust. By default, new formulas use relative references, and you need 
to switch them to absolute references. For example, if you copy a absolute reference in cell B2 to 
cell B3, it stays the same in both cells =$A$1. 

 
 

Copied formula with absolute reference 

2.1 (Continued) 

Excel assumes that the first column is the X-variable. Select the Series tab. 

 
 
On the Series tab define the columns that are X and Y variables again using the Data range box. 
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• Click Next.  
• Add or modify labels and title and click Next. 

 
 
• The default legend is not informative. To delete it go the Legend tab and uncheck box. 
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• The last step is to place your chart. You can have the chart on the current worksheet or in 

a new one. Make your choice and click Finish. 

 
 

If you chose to print it in a new worksheet, your plot will appear in the new worksheet. 
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To print a worksheet, first click on File/Page Setup. 

 
 

There you can choose the page layout, either Portrait or Landscape, and adjust the size. The 
Print Preview allows you to see what will be printed before actually doing so, which saves time 
and paper. 

 
 

Click on File/Print to open the print dialog window. In the Print dialog box, make sure the 
printer is correctly specified. Here you can specify Print range, pages to be printed etc.  
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Alternatively, if the Print Preview is satisfactory, click on the printer icon on the main toolbar. 

 
 
If you are creating a document, click inside the graph and enter Ctrl+C which copies the figure 
into the “clipboard.” Transfer to an open document, place the cursor in the document where you 
want the figure and enter Ctrl+V to paste the figure into the document, where it can be resized by 
dragging a corner inward. Give it a try. 

2.2 ESTIMATING A SIMPLE REGRESSION 

To estimate the parameters b1 and b2 of the food expenditure equation, place cursor in an empty 
cell and click on Tools/Data Analysis.  

 
 
The Data Analysis tool may not automatically load with a default installation of the program, if 
Data Analysis tool doesn't appear on the menu, click on Add-Ins under Tools: 



The Simple Linear Regression Model   29 

 
 

Check the box next to the Analysis ToolPak add-in and click OK.  

 
 
Data Analysis should now appear in the Tools menu, and you should not have to run the add-ins 
again for this option. 

When the Data Analysis dialog box appears, click on Regression, then OK.  

 
 

The Regression dialog box will appear with lots of user-defined inputs and options.  
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To define the input ranges, first click on the Input Y Range box. The box will minimize. 
Highlight the data in the y column, including the label. Do the same procedure to input the X 
Range.  

Other options: 
 

• Don’t forget to check the Label box if you are including labels.  
• Do not check the Constant is Zero box. This would suppress the intercept.  
• The output can be sent to the current page or another page in the workbook. 

Name the new worksheet Food Expenditure and hit Enter. 

 
 
Since you chose to place the output in a separate worksheet, a new worksheet will appear as a tab 
in the lower left corner of the work area. If you click on the Food Expenditure tab, you will 
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notice that the columns are not wide enough to show the cells completely. Highlight the data, or 
the entire sheet, and click on Format/Column/Autofit Selection.  

 
 
The output contains many items that you will learn about later. For now it is important to note 
that the Coefficients corresponding to Intercept and income are the least squares estimates b1 and 
b2. 

 

2.3 PLOTTING A SIMPLE REGRESSION 

In order to plot the regression function we must re-estimate the food expenditure equation and 
choose the Line Fit Plots option in the regression dialog box. 
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Click OK. The graph will be produced, and placed on the same worksheet as the regression 
output. If you can't find it on the worksheet, click on the File/Print Preview or click on the Print 
Preview icon and look for it.  

You will need to enhance your graph. Here are a few suggestions: 
 
• Right click on the legend and delete, if desired. 

 
 

• Left click once on the title to highlight it. Left click once more to edit. Name 
appropriately. If you double click the box surrounding the title, a dialog box opens that 
allows you more formatting options. 
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Repeat for the Y and X axes if you want to change the names of the variables. 

Notice that both the actual values of Y and the predicted values are plotted. To include the 
estimated regression function, place the cursor over one of the predicted Y points (the pink ones) 
until the caption "Series Predicted Y" appears.  

 
 

Right Click and choose Add Trendline.  

 
 
Under the Type tab, choose Linear.  
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Under the Options tab, check the box next to Display equation on chart. Click OK. 

 
 
If your figure is small, and begins to get cluttered, increase its size by clicking inside the border. 
Place the mouse arrow over the black square in the corner, until a double arrow appears. Then 
drag the mouse, with the left button held down, to increase (or decrease) the figure size. 

Your figure should look something like the one below.  
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2.4 PLOTTING THE LEAST SQUARES RESIDUALS 

The least squares residuals are defined as  

iiiii xbbyyye 21ˆˆ −−=−=  
 
In order to plot the least squares residuals, we must re-estimate the food expenditure equation and 
choose the Residual Plots option in the regression dialog box. 

 
 
If you wish to enhance your graph, you can do so by right clicking on chart area or plot area. 
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2.5 PREDICTION USING EXCEL 

Obtaining predicted values from an estimated regression function can be done either by doing the 
computations or using the TREND function. 
 
Insert a new worksheet to the workbook select Insert/Worksheet on the main menu.  

 
 
Rename the worksheet Predictions by right clicking on the tab.  
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In the Predictions worksheet, create a template for prediction by copying the estimated 
coefficients from the regression and labeling them appropriately. Enter the income value for 
which you want to predict food expenditures. Create the formula for the predicted value of y, 

Incomebby 21ˆ += , using the cell references. 

 
 
The results in cell B6 will be 287.6088614. 

 
 
 
Excel has a built in function that computes predicted values from simple regressions. The form of 
the Trend function is 
 

TREND(range of Y variable, range of X variable, value of x0) 
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The value x0 is the value at which the prediction is desired. To use this function, return to the 
worksheet page containing the data. Type in the following command, 

 
 
The result will be in cell D2. 

 
 
 
As a final step, save your file. We recommend saving it under a new name, like food_chap02.xls, 
so that the original data file will not be altered. 
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CHAPTER  3 

Interval Estimation and Hypothesis 
Testing 

CHAPTER OUTLINE 
3.1  Interval Estimation 
        3.1.1 Automatic interval estimates 
        3.1.2 Constructing interval estimates 
   

    3.2  Hypothesis Testing 
  3.2.1 Right-Tail tests  
        3.2.2 Left-Tail tests 
        3.2.3 Two-Tail tests 

 
In this chapter we continue to work with the simple linear regression model and our model of 
weekly food expenditure.  

3.1 INTERVAL ESTIMATION 

For the regression model 1 2y x e= β +β + , and under assumptions SR1-SR6, the important result 
that we use in this chapter is given by 

 

( )
k k

k

bt
se b
−β

=  ~  ( )2Nt −    for k = 1,2 

 
Using this result we can show that the interval ( )k c kb t se b±  has probability 1−α of containing 
the true but unknown parameter kβ , where the “critical value” ct  from a t-distribution such that 
( ) ( ) 2c cP t t P t t≥ = ≤ − = α   

3.1.1 Automatic interval estimates 

To construct the confidence interval estimates, we will use the Regression function in Excel. To 
do that, open the workbook containing the food expenditure regression that we considered in 
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Chapter 2. Excel provides 95% confidence interval for the Least Squares estimates by checking 
the Confidence Level box in the Regression Dialog box. 

 
   
Excel will report the confidence interval in the Summary Output next to the coefficient 
estimates. The results show the lower and upper values for the 95% confidence interval for the 
coefficient estimates.  
 

 
 
To have Excel calculate a different confidence interval, estimate a regression, and after checking 
the Confidence Level box, type in the desired level, for example, 98 for 98% confidence interval. 

 

 



Interval Estimation and Hypothesis Testing   41 

3.1.2 Constructing interval estimates 

While using the automatic interval estimation feature in Excel is the quickest and easiest way to 
obtain interval estimates, a general template can be created for calculating interval estimates.  

To construct the interval estimates we require the least square estimates bk, their standard 
errors se(bk) and the critical value for t-distribution, tc. We already know we can find the least 
squares estimates bk , their standard errors se(bk) in summary output. We also need to find values 
tc, such that α/2 of the probability is in either tail. As an example, the critical values that mark off 
α/2 = .025 of the probability in each tail of a t-distribution with 38 degrees of freedom. Checking 
Table 2 at the front of your book, we find that the value is tc = 2.024 on the positive side and, 
using the symmetry of the t-distribution, − 2.024 on the negative side. Excel makes it easy to 
compute critical values from the t-distribution using the TINV function. 

To generate 95% confidence interval, first open the workbook containing the food 
expenditure regression and insert a worksheet. Move the cursor over the tab with the default 
name, right click, and rename the sheet t-values. 

 
 
Go to the newly created worksheet and select a cell. Click on the drop down menu next to Sum 
(∑).   

 
 
Find TINV from the Statistical Function category, and click OK.  

 
 
In case you don’t see Statistical Function on your menu, choose More Functions. Then, find 
TINV from the Statistical Function category, and click OK. 
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Alternatively, click on the Paste or Insert Function (f*) icon to open up the same search. 

 
 
Either way, in the TINV dialog box, fill in the box as shown below. 
 

 
 
The Probability value you need to fill in is the α in two-tails of the t-distribution.  Enter the 
degrees of freedom, 38, and click OK. The resulting value, 2.024394147 will appear in your  
worksheet when you click OK. 
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We can now create a Confidence Interval Template. Cells with bold border require user 
input, some obtained from the regression results. 

 
 
Once you have the worksheet, the Least Squares Estimates and the Standard Error values can 
be typed in, or can be copied from the regression results on the food expenditure worksheet.   

 

3.2 HYPOTHESIS TESTING 

Inference in the linear regression model includes tests of hypotheses about parameters which also 
depend upon Student’s t-distribution. One- or two-tail general tests can be calculated by methods 
similar to the confidence interval construction. The required ingredients are results from the least 
squares estimation and the ability to use the Excel functions TINV and TDIST. 

3.2.1 Right-Tail tests 

To test the hypothesis 0 2: 0H β =  against the alternative that it is positive (>0), as described in 
Chapter 3.4.1a of POE, we use a one-tail significance test. For this purpose, we must compute the 
value of the critical values that define the rejection region, the test statistic and the p-value of the 
test. 
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• If we choose the α = .05 level of significance, the critical value is the 95th percentile of 
the t(38) distribution which can be computed by the TINV function discussed earlier. 
TINV(0.10, 38) =  1.685954461. The value returned is the right tail critical value. 
Beware that the Excel function TINV(probability, degrees of freedom) returns the value 
such that the area in the two-tails of the t(df) distribution equals the given probability 
value.  Thus if we want a critical value such that α = .05 is in the right tail, we must 
provide the TINV function with probability = .10. 

• The test statistic is the ratio of the estimate b2 to its standard error, se(b2).  
• For the p-value, we use the TDIST function where the amount of probability in the right-

tail of a t-distribution with 38 degrees of freedom can be computed. To obtain this value, 
we find TDIST from the Statistical Function category under either Sum drop down 
menu, or Paste Function.  

 
 
This work can be simplified by using a template that can be used when needed.  
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The t-statistic value 4.8773 falls in the rejection region, and p-value is less than the level of 
significance α, thus we reject this null hypothesis. 

 
 
To test an economic hypothesis such as 0 2: 5H β ≤  against 1 2: 5H β > , the same steps are 
followed except for the construction of the t-statistic. This can be accomplished by replacing the 
0 with 5 in our template. 

The t-statistic value 2.4887 falls in the rejection region, and p-value is smaller than the level 
of significance α, thus we reject this null hypothesis. 

3.2.2 Left-Tail tests 

To test the significance, we test 0 2: 0H β ≥  against 1 2: 0H β < . The value of the t-statistic for this 
null and alternative hypothesis is the same as for a right-tailed test.  

 
• If we choose the α = .05 level of significance, the critical value is the 5th percentile of the 

t(38) distribution which can be computed by the TINV function discussed earlier.  
−TINV(0.10, 38) = −1.685954461. The value returned is the right tail critical value.  

• The test statistic is the ratio of the estimate b2 to its standard error, se(b2).  
• The p-value, is the area to the left of the calculated t-statistic.  

 
Let’s plug in the left tail values into our template: 
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To test the null hypothesis that β2 ≥ 12 against the alternative β2< 12, we use the template and 
plug in the input numbers. The t-statistic value −1.6859 does not fall in the rejection region, and 
p-value is greater than the level of significance α, thus we fail to reject this null hypothesis. 

 

3.2.3 Two-Tail tests 

For the two tail test of the null hypothesis that 2 0β =  against the alternative that 2 0β ≠  the same 
steps are taken. We can plug the necessary information into the template.  
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Since the t-statistic value 4.8773 falls in the rejection region, and p-value is smaller than the level 
of significance α, thus we reject this null hypothesis. This test is also carried out by Excel within 
the Regression Summary Output labeled t-Statistic and p-value. 
 
 
 
 
 
To test the null hypothesis that β2 = 12.5 against the alternative β2 ≠ 12.5, we use the two-tailed 
test template and plug in the input numbers. The t-statistic value −1.6859 does not fall in the 
rejection region, and p-value is greater than the level of significance α, thus we fail to reject this 
null hypothesis. 
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CHAPTER  4 

Prediction, Goodness-of-Fit, and 
Modeling Issues 

CHAPTER OUTLINE 
4.1 Prediction for the Food Expenditure Model 
 4.1.1 Calculating the standard error of the 
         forecast  
 4.1.2 Prediction interval 
4.2 Measuring Goodness-of-Fit 
 4.2.1 R2  

  4.2.2 Covariance and correlation analysis 
4.3 Residual Diagnostics  
 4.3.1 The Jarque-Bera test 
 

4.4 Modeling Issues 
 4.4.1 Scaling the data 
 4.4.2 The log-linear model 
 4.4.3 The linear-log model  
 4.4.4 The log-log model    
4.5 More Examples  
 4.5.1 Residual analysis with wheat data 
 4.5.2 Log-linear model with wage data  
 4.5.3 Generalized R2 

4.1 PREDICTION IN THE FOOD EXPENDITURE MODEL 

We have already illustrated how to obtain the predicted values for the food expenditure for a 
household in Chapter 2. In this chapter, we will calculate the standard error of the forecasted 
value and construct a prediction interval. 

4.1.1 Calculating the standard error of the forecast 

Recall from Section 2.6 of this manual, the forecasted value of household food expenditure for a 
household with income of $2000 per week is calculated as $287.6088614. Now, we will compute 
the standard error of the forecasted value where forecast error is calculated as  
 

0 0 1 2 0 0 1 2 0( ) ( )f y y x e b b x= − = β +β + − +�   
  

The estimated variance for the forecast error is 
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( ) ( )
( )

( ) ( )
2 2

202 2
0 22

ˆ1ˆ ˆvar 1 var
i

x x
f x x b

N Nx x

⎡ ⎤− σ
= σ + + = σ + + −⎢ ⎥

Σ −⎢ ⎥⎣ ⎦
 

 
And the square root of the estimated variance is the standard error of the forecast.  
 

( ) ( )varse f f=  
 
To calculate the forecast error for the food expenditure data, open the food.xls file. In addition to 
the summary regression output (see Section 2.3 of this manual), we will need the sample mean of 
income. To obtain the sample mean of income select Tools/Data Analysis and from the menu 
choose Descriptive Statistics. 

 
 
In the dialog window specify the data range and ask for summary statistics. 

  
 
Excel will provide the univariate summary statistics for Food Expenditure and Income variables. 
We will use the mean of income and sample size in the calculation of the standard error of the 
forecast.  
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Now, we can go back to Regression Output, and plug in the necessary numbers into our formula 
and calculate the standard error of the forecast. Recall from above that the formula is 
 

( ) ( )
( )

( ) ( )
2 2

202 2
0 22

ˆ1ˆ ˆvar 1 var
i

x x
f x x b

N Nx x

⎡ ⎤− σ
= σ + + = σ + + −⎢ ⎥

Σ −⎢ ⎥⎣ ⎦
 

 
and  

( ) ( )varse f f=  
 
The formula indicates that, the farther 0x is from the sample mean x , the larger the variance of 
the prediction error, the smaller the sample size, the larger the forecast error and the less reliable 
the prediction is likely to be. 
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To calculate the standard error of the forecast for 0x , we will need the 2σ  which is the Mean 
Squared Residual (MSR) from cell D13 in the ANOVA table, the ( )2var b  which is the square 
of the standard error of income from cell C18 and 0x  which is $2000. Once we type in the 
formula, it is possible to make the same calculation for different values of income. 

4.1.2 Prediction interval 

We construct a 100(1 )−α % prediction interval as  

( )0 cy t se f±�  
 
Since forecasted value and the standard error of forecast have been already calculated, 
constructing the confidence interval is very straightforward. Recall that we can obtain the ct  
values as shown in Section 3.1.2 and the forecasted values in Section2.6 of this manual. 
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We can also create a worksheet, name it predictions and calculate standard error of forecast and 
the prediction intervals for specified values of income.  

4.2 MEASURING GODDNESS-OF-FIT 

The ANOVA table in the regression output provides the goodness-of-fit measures. 
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4.2.1 Calculating R2 

In the simple regression model, the 2R  is the square of the sample correlation between the x and y 
variables. It is calculated as 2 1R SSR SST SSE SST= = −  is reported in standard regression 
output.  

 

4.2.2 Covariance and correlation analysis 

The covariance and correlation can tell us about the linear relationship between two variables, a 
primary concern of linear regression. Specifically, the covariance tells us the direction of the 
linear relationship, while the correlation is a measure of the strength (and direction) of the linear 
relationship. Multiple R, in the simple regression output, gives us the square root of 2R  which is 
the correlation between x and y. 

 
 
A more general way to calculate covariance and correlation can be achieved by utilizing the Data 
Analysis under the Tools menu. 
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The sample correlation coefficient, r, measures the direction and strength of the linear 
relationship between two variables and is between −1 and 1. To obtain the sample correlation 
coefficient, choose correlation from the Tool/Data Analysis menu and click OK. The 
Correlation dialog box will appear. Fill in the appropriate input range and be sure to check the 
Labels in First Row box since labels are included. Place the output on a new worksheet named 
Correlation and click OK. 

  
 
The correlations are: 

 
 
The results will appear in the new worksheet, Correlation. You may need to format the 
worksheet by choosing Format/Column/AutoFit Selection. The estimated correlation between 
food expenditures and weekly income is 0.620485 which is the value given as Multiple R in the 
regression output summary. Values on the diagonal of the correlation matrix will always equal 1.  
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To find the sample covariance matrix, click on Tool/Data Analysis menu again and highlight 
Covariance and click OK. 

 
 
The Covariance dialog box will appear. Fill in the appropriate input range and be sure to check 
the Labels in First Row box since labels are included. Place the output on a new worksheet 
named Covariance and click OK. 

 
 
The covariance matrix will appear on the new worksheet, but needs to be formatted. Choose 
Format/Column/Auto Fit Selection.  

 
 
The diagonal elements of the covariance matrix are the estimated sample variances. The 
covariance between food expenditures and weekly income is positive, suggesting a positive linear 



Prediction, Goodness-of-Fit, and Modeling Issues  57 

relationship. The value of the covariance, 466.7817, does not, however, tell you the strength of 
that linear relationship. 

4.3 Residual Diagnostics 

Every time a regression model is estimated, certain regression diagnostics need to be carried out. 
By analyzing the residuals of the fitted model, we may be able to detect model specification 
problems. A histogram of the residuals can suggest the distribution of the errors, and the Jarque-
Bera test statistic can be used to formally test for normality. Both of these functions are important 
since hypothesis testing and interval estimations are based on distributional assumptions.  

In order to create a histogram of the residuals, we need to rerun the food expenditures model 
and choose the Residuals output option. 

 
 
Excel will provide the residuals for each observation, in addition to the standard Regression 
output. Examine the values of the residuals, noting the lowest and highest values. Create a BIN 
column next to the residuals column and determine the category values for the histogram. In this 
column, enter the values -250, -200, -150, -100, -50, 0, 50, 100, 150, 200 and 250. 
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Once you have entered the BIN column, choose Tools/Data Analysis/Histogram from the menu 
bar, and click OK. 

 
 
The Histogram dialog box will appear. 

 
 
Fill in the data ranges, by highlighting the residuals for the Input Range, and highlight the values 
created in the BIN column for the Bin Range. Place the output on a new worksheet called 
Histogram. After checking the Chart Output box, click OK. 
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The Bin values and Frequencies appear, along with the histogram. Format the histogram graph 
as needed. (Remove legend, resize, rename title, etc). The residuals seem to be centered around 
zero, but the symmetry of the distribution seems questionable.  

4.3.1 Jarque-Bera test for normality 

A formal test of normality, the Jarque-Bera test, uses skewness and kurtosis, which can be easily 
estimated with Excel. 

As discussed earlier in Section 4.1.1, Excel has a tool for calculating the Descriptive 
Statistics, which can be found on the Tools/Data Analysis menu. Skewness and kurtosis can also 
be found among the statistics calculated.  

Skewness is a measure of asymmetry of a distribution about its mean. For a sample 
1 2, , , Tx x x…  an empirical measure of skewness is 

( )3
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Kurtosis measures the peakedness, or flatness, of a distribution. An empirical measure of 
Kurtosis is  
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In the case of the least squares residuals, ê , the formulas simplify because 
1
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ˆ 0e = . Thus the formulas for skewness and kurtosis of the least squares residuals are  
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Skewness measures the symmetry of the data, a value of zero indicating perfect symmetry. 
Kurtosis refers to the "peakedness" of the distribution, with a value of 3 for a normal distribution. 
Using these measures, the test statistic for the Jarque-Bera test for normality is 
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where S is skewness and K is kurtosis. This test statistic follows a chi-square distribution with 2 
degrees of freedom. Below is preparation of the worksheet for this calculation for the food 
expenditures model. 

Return to the worksheet containing the regression results and the residuals. Copy the column 
containing the least squares residuals to a new worksheet and create three additional columns and 
label them ‘ehatsquared’, ‘ehatcubed’ and ‘ehat to the fourth’. The formulas for these functions 
are ^2, ^3 and ^4 respectively and is illustrated in the below figure. Once you copy the formulas 
down the columns, you will be in a position to compute the S, K and JB statistics. With formulas 
showing, this portion of the worksheet should look like 

 

4.4 MODELING ISSUES 

4.4.1 Scaling the data 

Change the scale of the variables can easily be done on the worksheet containing the data. Label 
the empty column to the right of the independent variable INCOME*. In the first empty cell of 
this column, type =B2*100. Copy the formula down the column.  

 
 
Estimate a regression, using the new independent variable, INCOME* instead of the original 
independent variable, INCOME. 
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The coefficient on INCOME has changed and so has its standard error. Everything else in the 
regression output remained the same. When reporting results, be sure to note the appropriate units 
of measure for both food expenditures and weekly income.  

4.4.2 The log-linear model 

The use of logarithmic transformations are very common with economic data. Transforming the 
dependent variable using the log function will result in changing the interpretation of the 
regression equation. To estimate the log-linear version of the food expenditure model, we need to 
transform the dependent variable.  

( ) 1 2ln y x e= β +β +  
 
First, create a new column and label it ln(Food_Exp). In this column, calculate the natural log of 
food expenditures by typing =ln(A2) in the first empty cell. Copy the formula down the column.  
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Estimate the regression model using the ln(Food_Exp) as the dependent variable instead of 
Food_Exp. 

 
 
The interpretation for will be, an increase in income of $100 leads to a 4%  increase in the food 
expenditure. 

4.4.3 The linear-log model  

In linear-log model, the independent variable is transformed but not the dependent variable. 

( )1 2 lny x e= β +β +  

 
 
The interpretation for the linear-log model is, 1% increase in income, leads to about $1.32 
increase in the food expenditure.  

4.4.4 The log-log model  

In log-log model, both the dependent and the independent variables are transformed. Estimated 
2β  represents the elasticity indicating % change in the y variable, when x variable increase by 

1%. 

( ) ( )1 2ln lny x e= β +β +  
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In the food expenditure model, a 1% increase in income, is expected to increase food expenditure 
by about 0.56%. 

4.5 MORE EXAMPLES  

4.5.1 Residual analysis with wheat data 

For this example, open the excel file wa-wheat.xls. The dataset contains 48 observations on 
average annual wheat yield in four different shires of Western Australia; Northampton, Chapman, 
Mullewa, Greenough and TIME. First, estimate the simple regression of Greenough on time, and 
ask for the residual plot. 

 
 
Excel will produce the scatter plot of the residuals through time in addition to the standard 
regression output.  
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You can format the plot or change the plot type by right-clicking on the picture and selecting 
Chart Type. You can then pick the desired chart type. Let’s pick columns for this example. 

 
 
Excel will change the chart type of the residual plot, and provide a bar chart. 

 
 
Based on the residual analysis, if you think that is the incorrect functional form, you can generate 
a new column in Excel and transform time variable and rerun the regression using the 
transformed variable as your independent variable. To generate the cubic equation results 
described in the text, generate a transformed column under column F and replace TIME with 
TIME CUBE as your independent variable.  
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4.5.2 Log-linear model with wage data 

We will use the cps_small data set to illustrate a log-linear model. Open the cps_small.xls data 
set. In this chapter, we will only use EDUC and WAGES, so delete the rest of the columns. You 
can delete the columns by highlighting the entire column and selecting Delete under Edit.  

 
 
After deleting the unwanted columns, save the Excel sheet as Ch4_Wage. Then, transform the 
wage variable into log by typing the function in the first row below the label and copying down 
the entire column. 
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You can now estimate the log-linear function by using the new variable, ln(WAGE) as the 
dependent variable. 

 
 
The forecasted value from the log-linear wage equation is 

1 2lnyhat b b x= +  
 

In order to obtain a prediction for the dependent variables y, we need to use the exponential 
function to get the “natural predictor” back. 

( ) 1 2ˆ exp exp( )ny lnyhat b b x= = +  
 
In large samples a more precise predictor is obtained by correcting that “natural predictor” by 
multiplying it by 2ˆexp( / 2)σ . Using the coefficient estimates, the raw forecasted values can be 
calculated as shown in the cell B23 of the below Excel output. Then, the natural predicted and the 
corrected predictors are calculated.  
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The standard error of the forecast can be found from the regression output using the formula 
provided in 4.1.1. After the predicted values and the standard error of forecast is found, it is very 
straight forward to construct the prediction interval. Remember that the corrected predictor will 
always be greater than the natural predictor since the correction factor is always greater than one. 

4.5.2 Generalized R2 

The generalized R2 is the appropriate measure of fit for this model is the square of the correlation 
between the “best” predictor and the wage variable. Remember that the corrected predictor and 
the natural predictor only differ by the constant so they have the same correlation to the wage 
variable. You can calculate the generalized R2 by using the Tools>Data Analysis>Correlation 
and choose the column of Wage and the column of predicted (either corrected or natural) wage or 
you can use the CORREL statistical function:  
 

CORREL(wage,wage_c) 
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CHAPTER  5 

Multiple Linear Regression 

CHAPTER OUTLINE 
5.1 Big Andy’s Burger Barn 
5.2 Prediction 
5.3 Sampling Precision 

5.4 Confidence Intervals 
5.5 Hypothesis Testing 
5.6 Goodness-of-Fit 

5.1 BIG ANDY’S BURGER BARN 

The multiple linear regression model is the extension of the simple model where there is more 
than one explanatory variable. We will use Big Andy’s Burger Barn to transition to the multiple 
regression model. This is a multiple regression model where the dependent variable, SALES is a 
linear function of PRICE charged and the level of advertising, ADVERT. 

1 2 3SALES PRICE ADVERT e= β +β +β +   
 

Using Excel to perform multiple regression is just like estimating a simple regression model, 
except we will include all explanatory variables in the X range. Open andy.xls. 
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The first column is the monthly sales in $1,000 in a given city, the second column is the price of 
hamburgers (actually a price index for goods sold) measured in dollars and the third column is the 
advertising spending, also measured in $1,000. To estimate this model, go to Tools>Data 
Analysis>Regression and fill in the regression dialog box so that the Y Range is the dependent 
variable, SALES and the X Range includes both the PRICE and the ADVERT columns. Make sure 
to check the Labels box and hit OK. 

 
 
The results look very similar to what we've seen before, except now we have parameter estimates 
and other information on PRICE and the ADVERT. This portion of the output appears as 
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5.2 PREDICTION 

Using the estimated regression equation, we can now forecast values of sales for different values 
of price and advertising like we did in the simple regression case using the below formula.  

1 2 3

118.9136131 7.907854804* 1.862583787 *

SALES b b PRICE b ADVERT

PRICE ADVERT

= + +

= − +
 

 
You can transfer this formula to Excel in the following fashion: 

 
 
These formulas will yield the sales forecast for specified values of price and the advertising 
expenditure as shown below. 
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5.3 SAMPLING PRECISION 

To estimate the error variance, we will use the ANOVA (Analysis of Variance)  table. Recall hat 
the error variance of the regression equation is: 

2

2 1

ˆ
ˆ

N

t
i

e
SSE

N K N K
=σ = =
− −

∑
 

 
The formula is the sum of squared errors divided by the degrees of freedom. This quantity is 
important and is reported automatically in the ANOVA table when a regression is estimated. 
 

 
 
The square root of the estimated regression variance is the Standard Error of the regression and 
is reported in the Regression statistics.  

Standard Error 23.87420813 4.886124039MSE= = =  
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The estimated least squares variance/covariance matrix can be represented as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1, 2 1, 3

1 2 3 1, 2 2 2, 3

1, 3 2, 3 3

var cov cov

( , , ) cov var cov

cov cov var

b b b b b

Cov b b b b b b b b

b b b b b

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The estimated variance/covariance matrix of the least squares estimators are not directly reported 
by Excel. However, in the simple model they are easily obtained.  The estimated variance of b2 is  

( )
( )

2

2
2

1

ˆˆvar T

t
t

b
x x

=

σ
=

−∑
 

 
The standard error of the estimated coefficient is  

( ) ( )
( )

2

2 2
2

1

ˆˆvar T

t
t

se b b
x x

=

σ
= =

−∑
 

 
In the Excel output we are given the values of the standard errors for the least squares estimates. 
The Standard Errors are reported in the column next to the Coefficient estimates. The 
estimated variances can be obtained by squaring the standard errors. 

 
 
So, we can fill in the variances in the covariance matrix as follows: 

( ) ( )
( ) ( )
( ) ( )

1, 2 1, 3

1 2 3 1, 2 2, 3

1, 3 2, 3

40.3433 cov cov

( , , ) cov 1.2012 cov

cov cov .4668

b b b b

Cov b b b b b b b

b b b b

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The formula for ( )2, 3cov b b  is: 
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( )
( )

2
23

2, 3 2 *2 *2
23 2 3

ˆ
cov

1 t t

rb b
r x x

− σ
=

− ∑ ∑
 where ( )2*2

1

T

tk tk k
t

x x x
=

= −∑ ∑ . 

 
Since the estimated covariances are not reported by Excel directly, we need to translate this 
formula into Excel. Let’s start by creating a worksheet by copying our data worksheet. Choosing 
Edit>Move or Copy Sheet.  

 
 
Move/Copy dialog box will open, choose the data sheet and make sure to click the Create a 
copy box.  
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You will see another tab added to your three existing worksheets. Rename the new sheet 
covariance by highlighting the name of the tab. First calculation will be the sum of square 
calculations in the denominator,  

( )
2

*2

1

T

tk tk k
t

x x x
=

= −∑ ∑  

 
To accomplish this, go to the bottom of PRICE column and write the formula to get the average 
x , and repeat it for ADVERT column. 

 
 
Next, create 2 new columns and name them PRICE - MEANP and ADVERT- MEANA. In these 
columns, we will store the difference from the mean.  

 
 
Recall that we store the mean of price in cell B77. By putting the $ signs, we are making sure, 
EXCEL will use the same cell for the mean even when we copy our formula to another cell. Now, 
copy and paste the formula to the rest of the column and repeat the process for the ADVERT-
MEANA column, too. 
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Once you have calculated the differences from means, we will now calculate the sum of squares. 
Recall that we can do Sum of Squares calculations using the Insert function  

 
 
or simply by typing the formula = SUMSQ(…). 

 
 
Once you have the squares calculated, we can now create columns to calculate the deviation, all 
we have to do is to put the formula together. Recall that the formula is 

( )
( )

2
23

2, 3 2 *2 *2
23 2 3

ˆ
cov

1 t t

rb b
r x x

− σ
=

− ∑ ∑
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We already know that 2ˆ MSEσ = = 23.8742 from our regression output. We have calculated the 
correlation coefficient between PRICE and ADVERT to be 0.0264. Plug all the numbers into the 
formula will give us the covariance of  

( )2, 3cov -0.01974b b = . 

5.4 CONFIDENCE INTERVALS 

The 95% confidence interval for each parameter is provided by default in the Excel regression 
output. If a different confidence interval is needed, Excel will also provide that. We can return to 
the worksheet containing the original andy.xls data. Run the regression using Tools/Data 
Analysis/Regression. We can then check the Confidence Level box and set the level to 90. Set 
all other desired options and click OK. 

 
 
Both the 95% and 90% confidence intervals are reported for the β1, β2, and β3. 

 
 

The 90% confidence interval for β3 suggests that an additional $1000 in advertising expenditures 
leads to an increase in total revenue that is between $724 and $3001.  Note that a 95% interval is 
always wider than the 90% confidence interval.   
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5.5 HYPOTHESIS TESTING 

The t-test to test the significance of β2, that the coefficient is zero, against the two sided 
alternative that it is not, is 

( )
2

2

0 7.908 7.215
1.096

bt
se b

− −
= = = −  

 
Excel provides the t-stats and p-values in the regression output is the simplest way to test the 
significance of a single coefficient.  The results are 

 
 
Recall that the t-stat is the coefficient divided by its standard error. Based on the reported p-
values, both b2 and b3 are significant at the 5% as well as 1% level.   

Sometimes we will need general tests about our parameters, such as the elasticity of demand 
where the null and alternative hypotheses are H0: β2 ≥ 0: a decrease in price leads to a decrease in 
total revenue (demand is price inelastic) and H1: β2 < 0: a decrease in price leads to an increase in 
total revenue (demand is price elastic).  

Or we may want to test an economic hypothesis such as 

0 3

1 3

: 1
: 1

H
H

β ≤
β >

 

 
To test whether an increase in advertising expenditures is "worth it", that is, total revenues 
increase enough to cover the increased cost of the advertising, we use the t-statistic 

( )
3

3

1bt
se b

−
=  

 
If the null hypothesis is true, it suggests that a dollar increase in advertising expenditures leads to 
less than a dollar increase in total revenue. In this case, it doesn't make sense to spend that extra 
dollar. On the other hand, if we reject the null hypothesis we conclude that there is sufficient 
statistical evidence to suggest that an increase in advertising expenditures is "worth it" in terms of 
the increase in total revenue. The value of the test statistic is  

( )
3

3

1 1.8626 1 1.263
0.6832

bt
se b

− −
= = =  

 
Since 1.263<1.666, we do not reject the null hypothesis. The critical value for this one-tail test is 
obtained as 
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5.6 GOODNESS-OF-FIT 

The goodness-of-fit of the regression model is based on the ANOVA table. The coefficient of 
determination, R2 and the ANOVA table are reported for the multiple regression model as they 
are for the simple model. The R2 measures the percent variation in dependent variable explained 
by the regression model. We already know how to decompose the sums of squares as 

SST=SSR+SSE 
 

And the coefficient of determination, R2 is 

2 1SSR SSER
SST SST

= = −  

 
The results from the regression are 
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The value R2 = .448 means that 44.8% of the total variation in total revenue is explained by price 
and advertising expenditures. However, there can be a problem with this measure in the multiple 
regression model since addition of each additional explanatory variable will inflate the R2 even if 
there is no economic basis for the variables to appear in the model. 

An alternative measure is the “adjusted R2”, denoted by Excel as Adjusted R Square is 
reported just below R Square. Adjusted R Square imposes a penalty for adding explanatory 
variables so it can never be larger than R2.  The Adjusted-R2 can also be calculated from the 
ANOVA table. 

2 /( )1
/( 1)

SSE N KR
SST N

−
= −

−
 

 
While this solves the problem associated with R2 (which has a particular interpretation!), the 
adjusted-R2 has no interpretation. It is no longer the percent of the variation in total revenue that 
is explained by the model. It should NOT be used as a device for selecting appropriate 
explanatory variables; good economic theory should determine the model. 
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CHAPTER 6 

Further Inference in the Multiple 
Regression Model 

CHAPTER OUTLINE 
6.1 The F-test 
6.2 Testing the Overall Significance of the Model 
6.3 An Extended Model 
6.4 Testing Economic Hypothesis 
 6.4.1 The significance of advertising  
 6.4.2 Optimal level of advertising  

6.5 Nonsample Information 
6.6 Model Specification 
 6.6.1 Omitted variables 
 6.6.2 Irrelevant variables 
 6.6.3 Choosing the model 
6.7 Poor Data, Collinearity and Insignificance 

6.1 F-TEST 

The t-test is used to test a specific null hypothesis, such as a single test of significance. With the 
multiple regression model, we might be interested in testing whether two or more explanatory 
variables are jointly important to the model. The F-test allows for testing joint hypotheses, and is 
based on a comparison of the sum of the squared errors from an unrestricted (full, or "original") 
model to the sum of squared errors from a model where the null hypothesis has been imposed. In 
the Big Andy’s Burger Barn example, we estimated the model 

1 2 3i i i iS P A e= β +β +β +  
 
We can use the t-test to test the hypothesis 0 2: 0H β = against 1 2: 0H β ≠ . Another way to test 
this hypothesis is in terms of the models each hypothesis implies using an F-test. If the null 
hypothesis is true, then the restricted model is formed as 

1 3i i iS A e= β +β +  
 
The F-test compares the sums of squared errors from the restricted model and the unrestricted 
model. A large difference will signal that the restrictions are false. The F-statistic we will use is 
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( )
( )

R U

U

SSE SSE JF
SSE N K

−
=

−
 

 
where SSER and SSEU are the sum squared errors from the ANOVA tables of the restricted and 
unrestricted models, respectively. J is the number of hypotheses or restrictions in the null 
hypothesis. N is the sample size of the unrestricted model, and K is the number of parameters in 
the unrestricted model. If the null hypothesis is true, this test statistic follows the F-distribution 
with J numerator and N−K denominator degrees of freedom.  

Unfortunately, Excel will not report these values automatically, so we will prepare a template 
for the F-test. Let’s start with Insert>Worksheet in the Andy.xls file. Name the new worksheet  
F Test. Type a heading such as "Hypothesis Testing - F-Test" in cell A1. Type Data Input 
labels and Computed Values labels in column A. For appearances, left justify and set to bold 
font the labels Data Input and Computed Values and right justify the sub-labels as shown 
below. 

 
 
In column B, we will type the formulas necessary to calculate the F-statistic, the appropriate 
decision, and the p-value associated with the calculated F-statistic. The commands are similar to 
those used to create the t-test template in Chapter 5. To calculate the F-statistic for a particular 
test, see the formula in cell B14. The functions FINV and FDIST are used to find the F-critical 
value and the p-value associated with the calculated F-statistic, respectively. The syntax of these 
functions are FINV(α,df_n,df_d) and FDIST(F-stat, df_n,df_d). 

To obtain the information needed in the Data Input section of the template, we need two 
regressions; the unrestricted model and the restricted model. We will use the SSE's from the 
ANOVA tables of each model. Now we can conduct the test for the restricted and unrestricted 
models mentioned above. 

Since we already have the unrestricted regression model for Andy.xls, we only need to run 
the restricted model by going to Tools>Data Analysis>Regression. This time include only 
advertisement (ADVERT) as the explanatory variables and save the worksheet as “Restricted 
Model” and click OK. 
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The regression output will be stored in the “Restricted Model” worksheet and will contain the 
ANOVA table.  

 
 
We can now transport the SSEs from the two models into our F-test template and test the 
hypothesis. First, highlight the cell that contains the SSE from the restricted model. With cell C13 
highlighted, choose Edit/Copy from the main Menu. A scrolling border appears around the cell. 
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The value is now stored on the Excel's clipboard and be pasted as desired. Go to the “Restricted 
Model” worksheet and Edit>Paste the SSE number from the restricted model under the Data 
inputs at cell B7. 

 
 
Now repeat this procedure for the unrestricted SSE from the original regression and paste it in cell 
B8. Fill in all the Data Input with appropriate information. Type "0.05" in cell B5 for testing at 
the 5% level. The computed values should now appear, and the appropriate decision reported. 

 
 
Since the F-statistic > F-critical value, and the p-value < α, we reject the null hypothesis at the 
5% level and conclude the price does have an effect on total revenue. 



84   Chapter 6  

6.2 TESTING THE OVERALL SIGNIFICANCE OF THE MODEL 

In the application of the F-test, the model significance at the desired α-level is determined. 
Consider a general linear model with K regressors with K−1 explanatory variables and K 
unknown parameters.  

1 2 2 3 3 ....i i i ik k iy x x x e= β + β + β + + β +  
 
We test whether all of the coefficients on the K−1 explanatory variables are jointly equal to zero, 
versus the alternative that at least one of coefficients is not zero. If the explanatory variables have 
no effect on the average value of y, then each of the slopes will be zero, leading to the following 
null and alternative hypothesis: 

0 1 2 3: .... 0kH β = β = β = = β =  

   1 :H At least one of the kβ  is nonzero for k=2,3,…K 
 
We can use the template created for any F-test of interest including this one. For jointly testing 
the significance of all of the explanatory variables in Andy’s Burger Barn, we test that all the β's 
are zero except β1, the intercept. Note that when there are NO explanatory variables in the model 
other than the intercept. The SSER is equal to the SST from the unrestricted model. The results and 
appropriate decision are 

 
 
We reject the null hypothesis and conclude that our model is significant at the 5% level; price or 
advertising expenditures, or both have a significance effect on total revenue. 

Alternatively, we can obtain the result to this F-test from Excel's ANOVA table. Notice that 
the F and p-values associated with the F-Test are identical. 
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If we compare the F-statistic to a critical value, or more easily, compare the p-value to α, we 
reject the null hypothesis and conclude the model is statistically "important".  

6.3 AN EXTENDED MODEL 

The concept of diminishing marginal returns is an important one in economics, and you should 
carefully consider this when modeling economic relationships. In our Sales for Andy’s Burger 
Barn model, it seems reasonable that each and every dollar increase in advertising expenditures 
would not lead to the same increase in sales; that is, the possibility of diminishing marginal 
returns to advertising should be considered. To allow for this possibility, we include the 
explanatory variable squared in the model. For simplicity we will rename SALES = S, PRICE = P 
and ADVERT = A. 

2
1 2 3 4i i i i iS P A A e= β +β +β +β +  

 
To extend our model to include this additional regressor, open the worksheet Andy.xls. Label 
column D "A2" and in cell D2, type the formula =C2^2. Copy this formula down the column. 
Estimate the regression and save the output in the “Extended Model” worksheet. 

 
 
We will get the following results: 
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Price P is now insignificant at the 5% level when squared advertising expenditures (A2) are 
included in the model. The estimated coefficient on A2 is negative as expected, and comparing the 
p-value to (any level of) α we conclude that it is significantly different from zero. This suggests 
that there are diminishing returns to advertising. 

6.4 TESTING SOME ECONOMIC HYPOTHESES 

Using this expanded model for total revenue, we will now examine several hypotheses of interest, 
using both t-tests and F-tests. 

6.4.1 The significance of advertising 

To test for the significance of all levels of advertising requires a joint hypothesis test; we must 
now consider the significance of both β3 and β4 using H0: β3 = 0, β4 = 0 against the alternative 
that at least one of the coefficients is not zero. We already have the unrestricted model in the 
previous section, we will need to estimate the restricted model, where PRICE will be the only 
explanatory variable. The ANOVA results are 
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We can now transfer the SSEs from this restricted model and the model we labeled “Extended 
Model” and use our template to test the significance of level of advertising at 5% significance 
level. 

 
 
We reject the null hypothesis and conclude that advertising expenditures do significantly affect 
total revenue. 

6.4.2 Optimal level of advertising 

We have already illustrated that the returns to advertising diminish. Then the optimal level of 
advertising will occur at the point where the marginal cost is equal to the marginal benefit of 
advertising. In other words, the optimum level is when the next dollar spent on advertising equals 
only one more dollar of sales. Taking the derivative of expected SALES with respect to 
Advertising expenditures A will give us the marginal benefit, which is  

( )
3 42 1

E S
A

A
Δ

= β + β =
Δ

 

 
Solving for A gives ( )*

3 41 2A b b= − , where b3 and b4 are the least square estimates. We can then 
substitute in our estimates for β3 and β4 and solve for the optimal level of advertising 

* 1 12.15123398 2.014
2( 2.767962762)

A −
= =

−
  

 
which is $2014. 

Suppose Andy wants to test if the optimal level of advertising is $1,900. If we substitute 1.9 
(since advertising data is in $1000), leads to the following hypothesis: 
 

H0: β3 + 2β4(1.9) = 1 against the alternative H0: β3 + 2β4(1.9) ≠ 1  
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or equivalently 

H0: β3 + 3.8β4 = 1 against the alternative H0: β3 + 3.8β4 ≠ 1 
 
A t-test could be used to test this single hypothesis, using the test statistic,  

3 4

3 4

( 3.8 ) 1
( 3.8 )

b bt
se b b

+ −
=

+
 

 
However, this test would require a calculation using the covariance between b3 and b4. Since 
Excel does not report the estimated covariance matrix for the LS estimators, we will instead use 
the F-test. We can construct the restricted model by plug in the restriction 
( 3 4 3 43.8 1 1 3.8β + β = ⇒β = − β ) into our equation ( 2

1 2 3 4S P A A= β +β +β +β ) such that the 
restricted model will become: 

2
1 2 4 ( 3.8 )S A P A A e− = β +β +β − +  

 
To run the restricted model, open Andy.xls.  

 
• Highlight column B. Insert a column by choosing Insert>Columns from the menu bar. 

Label this new column S-A indicating Sales - Advertising.  
• In the first empty cell of this column, type =A2−D2 and copy this formula down the 

column. This column will represent our new dependent variable for the restricted model. 
• Next, highlight column D and insert a new column. Label this A2-3.8A. In the first empty 

cell, type =F2−(3.8*E2) and copy the formula down the column. This column will be our 
new explanatory variable.  

• Observe that we inserted the A2−3.8A column next to the PRICE column since in Excel, 
the columns used for the X-Range (the explanatory variables) must be in adjacent 
columns. So, if you ever find that you want to run a regression and the explanatory 
variables are not all in adjacent columns, simply highlight and move things around as 
needed. Now we are ready to run the restricted model. Choose Tools>Data 
Analysis>Regression. Use S-A as the Y-Range. Use PRICE and A2−3.8A as the X-
Range. Perform this regression as usual.  

 
The regression summary output is 
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This sum squared residual can now be used in the F-test template. Recall that we are testing H0: 
β3 + 2β4(1.9) =1 or that $1,900 is the optimal level of advertising or not. After copying SSEs for 
the restricted and unrestricted model, set J=1 since we have only a single null hypothesis. The 
results from this test are  

 
 
We cannot reject the hypothesis that $1,900 is the optimal level of weekly advertising 
expenditures at the 5% level and conclude that Andy’s advertising strategy is compatible with the 
data. 

We can also conduct a joint test of two of Big Andy’s suppositions. Let's say in addition to 
proposing that the optimal level of monthly advertising expenditure is $1,900, Andy is assuming 
that P = 6 will yield sales revenue of $80. The joint hypothesis will be: 

0 3 4: 3.8 1H β + β =  and 1 2 3 46 1.9 3.61 80β + β + β + β =   

1 :H at least one hypothesis is not true 
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Since J = 2, we must perform an F-test. The restricted model is found by substituting both the 
hypotheses in the null on the model and rearranging terms to form a model suitable for 
estimation. It can be shown that the equation used to estimate the restricted model is 
 

2
2 480 1.9 ( 6) ( 3.8 3.61)S A P A A e− − − = β − +β − + +   

 
To test this joint hypothesis in Excel, return to the worksheet containing the original data in 
andy.xls.  

 
• Create three new columns labeled YSTAR, P−6, and ASTAR.  
• In the first empty cell of YSTAR, type the formula =B2−78.1, where cell B2 contains S-A.  
• In the first empty cell of P−6, type =C2-6, where cell C2 contains PRICE.  
• In the first empty cell of ASTAR, type =F2−(3.8*E2)+3.61, where cell F2 contains A2 and 

E2 contains A.  
• Highlight the three cells containing these new formulas. Place the cursor on the lower 

right-hand corner of this selection until it turns into a cross-hatch. Left click, hold, and 
drag down to row 79. Release and the values appear in the cells.  

• Estimate a regression using YSTAR as the Y-Range. Use P−6, and ASTAR as the X-
Range.  

• Use the SSE from this restricted model and SSE from the unrestricted model to conduct 
the F-test, where K = 4, J = 2. 

6.5 NONSAMPLE INFORMATION 

Often times we have information about a particular model that does not come directly from the 
data. The information may come from past experience or from economic tenets. If correct the 
nonsample information improves the precision with which you can estimate the remaining 
parameters. To illustrate how we might go about incorporating the nonsample information, 
consider a model designed to explain the demand for beer, we will use a model of demand for 
beer (Q) based on its price (PB), the price of other liquor (PL), the price of all other remaining 
goods and services (PR), and income (I). The nonsample information is that consumers do not 
suffer from "money illusion"; that is, when all prices and income go up by the same proportion, 
there is no change in quantity demanded. 

We will use a log-log functional form for the model, and then impose restrictions that 
incorporate our nonsample information. The unrestricted model is 

( ) ( ) ( )1 2 3 4 5ln( ) ln( ) ln ln lntQ PB PL PR I e= β +β +β +β +β +  
 
and will impose the restriction β2 + β3 + β4 + β5 = 0. 

Rearranging this restriction, we have β4 = −β2 − β3 − β5, which can be substituted into the 
unrestricted model. After some manipulation, the equation we will estimate is  

1 2 3 5ln( ) ln ln lnt t t
t

t t t

PB PL IQ e
PR PR PR

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= β +β +β +β +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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This equation incorporates the properties of logarithms, as well as the nonsample information. 
We will get the Restricted Least Square Estimates by incorporating this restriction.  

 
Open the data file beer.xls. Note that the original data have associated labels already.  
• Label the next 3 columns PB/PR, PL/PR, and I/PR.  
• For PB/PR, in cell F2, type =B2/D2. Highlight cell F2, left-click on the lower right hand 

corner, hold, and drag down the next two cells to right.  
• Repeat the process for PL/PR, and I/PR.  
• Label the next four columns for the logs of the data, labeling them lnQ, lnPB/PR, 

lnPL/PR, and lnI/PR. Calculate the natural log of Q in cell I2 by typing =LN(A2), where 
cell A2 contains the first observation on Q.  

• Calculate the natural log of PB/PR in cell J2 by typing =LN(F2). Highlight cell J2, left-
click on the lower right hand corner, hold, and drag across the next two cells to right. 
This copies the formula for the other variables. 

• Highlight the section of cells containing the log formulas (I2 to L2). Left-click on the 
lower right hand corner of the selection, hold, and drag down the column to copy the 
formulas down to row 31. 

 
We can now run the regression by choosing Tools>Data Analysis>Regression to estimate the 
regression model. Use lnQ as the Y-Range and lnPB/PR, lnPL/PR, and lnI/PR as the X-Range. 
Include labels by checking the Labels box. Store the regression output on a new worksheet 
named “Nonsample Information”.  

 
 
and click OK for the output. 
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Recall that our restriction was β4 = −β2 − β3 − β5. To get back the estimate of β4, we need one 
more step. Unfortunately, while some statistical packages have options to automatically estimate 
restricted least squares estimates, Excel does not.  

In cell A21, type b4*= as a label. Next, in cell B21 type = -B18-B19-B20 to calculate b4* = 
−b2*−b3*−b5*, where cells B18, B19, and B20 contain the respective estimates. The restricted 
least squares estimates are  

 
 
Recall that the log-log model specification provides estimates of elasticities, not marginal effects. 
Substituting these results back into our specification, we have 

( ) ( ) ( )ln( ) 4.7978 1.2994ln( ) 0.1868ln 0.1667ln 0.9458lntQ PB PL PR I= − − + + +  
 

From the results, we find that demand for beer is price elastic (b2 < −1), does not seem to be 
affected by the price of other liquor (β3 is not statistically significant), and might be an inferior 
good (β5 < 1), although this would have to be formally tested. 
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6.6 MODEL SPECIFICATION 

Three essential features of model choice are (1) choice of functional form, (2) choice of 
explanatory variables (regressors) to be included in the model, and (3) whether the multiple 
regression model assumptions MR1–MR6, listed in Chapter 5, hold. In this section, we will 
explore the first two. 

6.6.1 Omitted variables 

If you omit relevant variables from your model, then least squares estimator will be biased. To 
introduce the omitted variable problem, we will consider a sample of married couples where both 
husbands and wives work. Open edu_inc.xls and first regress family income (FAMINC) on both 
husband’s (HE) and wife’s education (WE). The results are 

 
 
Omitting wife’s education and regressing family income (FAMINC) on only husband’s (HE) 
yields: 

 
 
And including WE and number of preschool age children (KL6) yields: 
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6.6.2 Irrelevant variables 

Including irrelevant variables in your model impairs the precision of least squares estimator. 
Least squares will be unbiased, but standard errors of the coefficients will be larger than 
necessary. In this example, two extraneous variables (XTRA_X5 and XTRA_X6) are added to the 
model. The results are: 

 
 
Notice how much larger the estimated standard errors became compared to the last regression in 
the previous section. 

6.6.3 Choosing the model 

Choosing an appropriate functional form for the model is very important. Although theoretical 
considerations should be the primary guide to functional form selection, you can also use the 
RESET (Regression Specification Error Test) test as a check to determine if you are making an 
obvious error in specifying your function or not. RESET is basically an F-test where the 
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restricted model is the "original" model and the unrestricted model is a polynomial approximation 
including the predicted yt's squared, cubed, etc., as explanatory variables. The general foundation 
of the test is that if the model is improved by artificially including powers of the predicted values, 
then the original model must not have been adequate. 

RESET is a simple test with the null hypothesis is that your functional form is correct, the 
alternative is that it is not. We will talk about two variants of the RESET test; RESET(1) and 
RESET(2). The first adds only 2ŷ  to the model and tests its significance using the t-test. The 
second adds both 2ŷ  and 3ŷ  and tests their joint significance. 

Estimate the regression assuming the functional form is correct and obtain the coefficient 
estimates, calculate the predicted values. We will illustrate these tests using the family income 
regression where the family income is the dependent variables and the education of the husband 
and wife are the explanatory variables. 

1 2 3FAMINC HE WE e= β +β +β +  
 
The unrestricted model includes the squares of the predicted y for RESET(1) and both squares 
and cubes of the predicted y for RESET(2).  
 

RESET (1) 2
1 2 3 1 ˆt t t ty HE WE y e= β +β +β + γ +  

 
RESET(2) 2 3

1 2 3 1 2ˆ ˆt t t t ty HE WE y y e= β +β +β + γ + γ +  
 

Open edu_inc.xls. First estimate the “Restricted Model” where FAMINC is the Y-Range, and 
HE and WE are the X-Range. Place the output on a new worksheet called “Restricted”. Check 
the Residuals box. This is needed to obtain the predicted y-values, then click OK.  
 

 
 
From the regression output, we will use the SSE to be used for the F-test. Below the regular 
regression output, you will observe the residual output. The residual option in the regression 
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dialog box provides the predicted values and the errors associated with each observation. Since 
we will use the squares and cubes of the predicted column, we need to copy and paste this column 
next to our data. Highlight cells B25 to B453, which contain the predicted FAMINC. Choose 
Edit>Copy from the menu bar. Move to the worksheet containing the original data. Go to cell G1 
and Edit>Paste. Your data now looks like: 

 
 
Now create two new columns, YHAT2 and YHAT3 in columns H and I. However, before we 
create the square and the cube of the predicted values, we will need to make an adjustment for the 
RESET test to work. We will first create a column for the adjustment; in cell H1 type adjusted 
yhat. In cell H2, type =G2/10,000 and copy it down the entire column.  

 
 
Now, using the adjusted yhat, we will create two new cells. Insert>Column two new columns 
next to variable WE and label tem yhat2 and yhat3, respectively. Notice that the adjusted yhat cell 
has moved to column J. In cell D2, type =J2^2. In cell E2, type =J2^3.  

 
 
Highlight both cells D2 and E2. Copy the formulas down to row 429. 
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Now we have all the explanatory variables ready. Recall that when you perform a regression 
in Excel, all of the explanatory variables must be in adjacent cells, that is why we inserted the 
new columns next to the other explanatory variables. 

For RESET(1), we will only use YHAT2. 

 
 
We can now conduct the RESET(1). Since we are testing the significance of yhat2, we can either 
do a t-test or and F-test using the SSE from the unrestricted model (above) and the restricted 
model. 

 
 
The t-statistic from the regression output of RESET(1) Unrestricted is 2.02 and the p-value is 
0.044. Since t-stat > t-critical and p-value< α, we reject the null hypothesis; we have evidence to 
support model misspecification. Also, since in a single hypotheses test, F = t2, F= 4.08. 

For RESET(2), go to Tools>Data Analysis>Regression. 
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This time use FAMINC in the Y-Range, and HE, WE, YHAT2 and YHAT3 as the X-Range. Place 
the output on a new worksheet called “Reset 2 Unrestricted”.  

  
 
This time we are testing the joint significance of YHAT2 and YHAT3. In other words, we test the 
hypotheses H0: γ1 = γ2 = 0 versus the alternative that γ1 ≠ 0, γ2 ≠ 0, or both do not equal zero. For 
the joint test, open the template labeled “F-Test”.  

 
• Fill in the Data Input values for the F-test. J = 2, T = 428, and K = 4.  
• Next, we will copy the SSEs from the restricted and unrestricted models and paste it into 

the template. The SSE from the unrestricted model is cell C13 of the output above. So 
right-click on cell C13 from the regression output.  

• Choose Copy, place the cursor in cell B8 of the F-test template, right click and choose 
Paste.  

• Next, return to the “Restricted Model” regression output and copy the SSE from the 
output and paste it in cell C7.  

 
Below are the results of the F-test; we reject the null hypotheses and conclude that the 
specification is inadequate. 
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Beware that the RESET results are different than those in your book. Although these results are 
valid, EXCEL will not be able to provide you with the same RESET values despite the 
adjustment we made above. 

6.7 POOR DATA, COLLINEARITY AND INSIGNIFICANCE 

When two or more explanatory variables are correlated, or collinear, the multiple regression 
model is unable to isolate individual affects on the dependent variable. Collinearity can cause 
high standard errors for the least squares estimators, resulting in t-tests that suggest the 
parameters are not significantly different from zero. Some strange results can occur, and we 
should be careful in interpreting our results when collinearity is present. 

When there are one or more exact linear relationships between any of the explanatory 
variables, the least squares estimation process does not work. Many statistical packages will not 
even provide results, and will issue some type of error message. Excel does produce results, 
without any warnings or error messages but issues zeros for the standard errors.  

More commonly, we face situations where the collinearity is not perfect, but can be 
"harmful". When linear relationships between our explanatory variables are strong enough, high 
standard errors, low t-statistics, and unstable estimates result. We should, therefore, look to see if 
our results are being affected by collinearity. There are several things to look at when trying to 
determine the existence of this type of problem, correlation and something we call an auxiliary 
regression.  

To explore the ways of identifying collinearity, we will use cars.xls. Open the data set and 
first estimate the model of miles per gallon (MPG) as a function of the number of cylinders (CYL) 
in the engine.  
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The output from this simple regression indicates a strong negative linear relationship between the 
MGP and CYL. 

 
 
Now add the car’s engine displacement in cubic inches (ENG) and weight (WGT) to the model. 
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The output now shows a very different relationship between the MPG and CYL. 

  
 
The value of the coefficient of CYL is much smaller, the standard error much larger and the 
variable is not significant anymore. We can also test other hypothesis such as the significance of 
ENG and joint significance of CYL and ENG. We will observe that CYL and ENG are individually 
not significant at 5% level but jointly they are. Joint test can be conducted by estimating the 
restricted model where both of there parameters are zero and using the F-test template as 
described in the previous section. This can happen when we can not isolate their individual 
impact. The independent variables CYL, ENG and WGT are highly correlated with each other and 
therefore highly collinear. A simple way the check the strength of possible linearity is to look at 
the correlation matrix. Correlation measures the direction and strength of a linear relationship 
between two variables. Choose Tools>Data Analysis>Correlation and indicate the data range in 
the dialog box. 

 
 
The correlation matrix is 
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These results show the high degree of linearity between all of the variables. However, correlation 
only measures the pair-wise linearity between variables. A more complex linear relationship 
between several variables at a time is not detected by correlation.  

To detect more complex linear relationships, we will use the coefficient of determination, R2, 
introduced in chapter six. Recall that R2 is interpreted as the percent of the total variation in the 
dependent variable that is explained by the model, or the explanatory variables. This 
interpretation is very helpful now. 

An auxiliary regression is a multiple regression, but one of the original explanatory variables 
is used as the dependent variable. We are not concerned with any of the regression output except 
the R2, because it measures how much of the variation in that one explanatory variable is 
explained, or being determined by, the other explanatory variables. This is, then, a measure of 
collinearity.  

We can estimate the auxiliary regressions where each explanatory variable is regressed on all 
the others. 

Regressing ENG on CYL and WGT 

 
 
Regressing CYL on WGT and ENG 
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Regressing WGT on ENG and CYL  

 
 
Check the R2 from each of these regressions. Any above 80% indicates strong collinearity which 
may adversely affect the precision with which you can estimate the parameters of the model 
containing all of these correlated variables. In our example, the R2s are approximately 94%, 90% 
and 87% respectively which are all well above the 80% threshold. Therefore, it is not surprising 
that it is difficult to isolate the individual contributions of displacement and number of cylinders 
to a car’s gas mileage. 
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CHAPTER  7 

Nonlinear Relationships 

CHAPTER OUTLINE 
7.1 Nonlinear Relationships 
 7.1.1 Summarize data and estimate regression 
 7.1.2 Calculating a marginal effect 
7.2 Dummy Variables 
 7.2.1 Creating dummy variables                        
 7.2.2 Estimating a dummy variable regression    
 7.2.3 Testing the significance of the dummy  
                  variables 
 7.2.4 Further calculations 

7.3 Applying Dummy Variables 
 7.3.1 Interactions between qualitative factors 
 7.3.2 Adding regional dummy variables 
 7.3.3 Testing the equivalence of two         
                 regressions 
7.4 Interactions Between Continuous Variables 
7.5 Dummy Variables in Log-linear Models 
 

7.1 NONLINEAR RELATIONSHIPS 

The least squares estimation procedure we have been using is based on the assumption that the 
model is linear in the parameters, though not necessarily linear in the variables. We saw an 
example of nonlinearity in variable in Chapter 6 in the sales model with diminishing marginal 
returns to advertising expenditures. To allow for this effect, we included the square of advertising 
expenditures as another explanatory variable. By transforming the advertisement variable, we 
captured the diminishing marginal returns without violating the assumptions of the linear 
regression model.  

Models that have parameters that are nonlinear require nonlinear least squares estimation. 
Although Excel is a powerful spreadsheet, it is not designed to be a complete econometric 
software package, and consequently it does not have the capabilities to estimate models that are 
nonlinear in the parameters. If you encounter such a problem, use econometric software such as 
Stata, EViews, Shazam, or SAS.  

7.1.1 Summarize data and estimate regression 

The following example will illustrate the flexibility that the polynomial terms can add to the 
linear regression model. We will use the wage equation: 
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2
1 2 3 4WAGE EDUC EXPER EXPER e= β +β +β +β +  

 
Get the summary statistics, Tools>Data Analysis>Descriptive Statistics. 

 
 
This will provide the summary statistics for WAGE, EDUC, EXPER and EXPER2 variables. 

 
 
To estimate the wage equation, open cps_small.xls. Highlight column D and insert a column 
using Insert>Column. Name the new column “EXPER2” and enter the formula =C2^2 and copy 
it down.  
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Estimate the model using Tools>Data Analysis>Regression.  

 
 
Estimate a regression and use WAGE as the Y-Range and EDUC, EXPER, EXPER2 as the X-
Range. Name the output worksheet “Polynomial”. 

 

7.1.2 Calculating a marginal effect 

Since the wage equation is nonlinear in variable “EXPER”, the marginal effect (slope) must be 
calculated as follows: 

3 4
( ) 2E WAGE EXPER
EXPER

∂
= β +β

∂
 

 
The marginal effect needs to be evaluated at a specific point, such as the median. You can get the 
median from the summary statistics. The median for the EXPER variable is 18 from the output 
above. The marginal effect at the median is: 



Nonlinear Relationships   107 

( ) 0.340949174 0.005093062*2*18 0.157598937E WAGE
EXPER

∂
= − =

∂
 

7.2 DUMMY VARIABLES 

Dummy variables are binary (or indicator) variables that indicate the presence or absence of a 
characteristic. In this section, we will use dummy variables in a real estate example. Open 
utown.xls. 

7.2.1 Creating dummy variables 

In many examples in POE dummy variables have already been created and are ready to use. An 
important issue in the real estate industry is how to accurately predict the price of a house, based 
on several of its characteristics, including the ever-important "location, location, location". 
Economists commonly use a "hedonic" model of pricing based on several characteristics such as 
size, location, number of bedrooms, age, etc. Using a dummy variable, Dt, which is equal to 1 if 
the house is in a desirable neighborhood and is equal to 0 if the house is not in a desirable 
neighborhood captures the qualitative factor of location. Including this variable in the regression 
model will allow the intercept to be different for houses in desirable areas compared to the 
intercept for houses not in desirable areas. This variable has been stored as variable UTOWN. 

We can also allow for different slopes for houses in different areas by including an 
interaction variable, the product of the dummy variable and one of the continuous explanatory 
variables.  

7.2.2 Estimating a dummy variable regression 

Estimating a dummy variables model is no different than estimating any other regression model. 
We will use the interaction slope dummy variable  between the size of the house sqft and the 
dummy variable for university town, utown. This will allow for the extra square footage of living 
space in a good neighborhood affecting the price differently than a house not in a good 
neighborhood. The full model we will estimate is 

 
1 1 2

3 2 3

( )

                    

PRICE UTOWN SQFT SQFT UTOWN

AGE POOL FPLACE e

= β + δ +β + γ ×

+β + δ + δ +
 

 
where  PRICE = the price of the house, in dollars 

UTOWN = 1 for houses near the university (desirable), 0 otherwise 
 SQFT = square feet of living area 
 AGE = age of house in years 
 POOL = 1 if house has a pool, 0 otherwise 
 FPLACE = 1 if house has a fireplace, 0 otherwise. 
 
Note that this model contains two continuous explanatory variables (SQFT and AGE), and three 
dummy variables, capturing the qualitative characteristics of location; presence of a pool, and a 
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fireplace in addition to the utown variable. Let's now estimate this model. Open utown.xls. Label 
column G sqftXutown. In cell G2 create the interaction variable by typing =B2*D2. 

 
 
Copy this formula down the column to row 1001. 

 
 
Zeros appear in column G down to row 482. Then sqft values appear after that. This is because 
the variable UTOWN is equal to zero through row 482, then one after that. 

Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-
Range and columns B through G as the X-Range. Don’t forget the include labels by checking the 
Labels box. Save to a new worksheet called Dummy and Interaction. 

 
 
The parameter estimates and corresponding t-stats and p-values are 
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7.2.3 Testing the significance of the dummy variables 

To test the significance of the University Town location, we test the individual null hypothesis 
using the t-test. From the output above, we conclude that all of the parameters are significant, 
using a one-tailed 5% level test. (Remember that Excel reports p-values for a two-tailed test). To 
conclude that the δ1 is statistically different from zero means that there is a shift in the intercept 
for houses near the university. Similarly, concluding that γ is different from zero means that the 
marginal effect of the size of the house is different for houses near the university. But Excel 
doesn't know that we have allowed the intercept and the coefficient on SQFT to differ across 
observations. It is our responsibility to correctly determine the intercept and slope estimates. 
Looking at the original model that we estimated 

Alternatively, we can test the significance of the location by testing the joint null hypothesis 
0 1 1: 0, 0H δ = γ =  against the alternative that at least one coefficient is not zero. To construct the 

F-test, we will run the following restricted model: 

1 2 3 2 3PRICE SQFT AGE POOL FPLACE e= β +β +β + δ + δ +  
 
And compare the SSEs from the restricted model and the unrestricted model (labeled Dummy 
and Interaction) using the F-test template. Since we are testing two hypothesis, J = 2 with the 
other input data of N = 1,000 and K = 7. 

7.2.4 Further calculations 

When the UTOWN is equal to one, the intercept is β1 + δ1 and when UTOWN is zero the constant 
is simply β1. Similarly, the coefficient on SQFT when UTOWN is one is equal to β2 + γ, and is 
equal to β2 when UTOWN is zero. We can calculate the estimates for these parameters on the 
Excel regression output worksheet. 

In cell A26, type the label NewIntercept and in cell A27, type the label New Beta2.In cell 
B26, type =B17+B20 to calculate the intercept when UTOWN is equal to one and type =B18+B23 
to calculate the coefficient estimate for SQFT when UTOWN is equal to one in cell B27. 
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The estimated regression functions for the houses near the university is 
 

1
ˆ 24.5 27.453 (1) 7.6122 (1) 1.2994

0.1901 4.3772 1.6492
PRICE SQFT SQFT

AGE POOL FPLACE
= + + + +

− + +
 

 
ˆ 51.953 8.9116 0.1901 4.3772 1.6492PRICE SQFT AGE POOL FPLACE= + + − + +  

7.3 APPLYING DUMMY VARIABLES 

In this section we will illustrate a variety of applications of dummy variables using cps_small.xls. 

7.3.1 Interactions between qualitative factors 

First we will consider the interaction between two dummy variables, black and female in the 
following model: 

1 2 1 2 ( )WAGE EDUC BLACK FEMALE BLACK FEMALE e= β +β + δ + δ + γ × +  
 
Open cps_small.xls. Label column K blackXfemale. In cell K2 create the interaction variable by 
typing =F2*E2. 

 
 
Copy this formula down the column to row 1001. 
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Recall that you need the X-Range variables next to each other. Insert columns and organize the 
columns by copying and pasting. 

 
 
Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-Range 
and columns B through E as the X-Range. Don’t forget the include labels by checking the Labels 
box. Save to a new worksheet called “Interactions btw dummies”. 
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The output will be: 

 
 
To test the joint hypothesis 0 1 2 1: 0, 0, 0H δ = δ = γ = , we will need to estimate the restricted model 
and carry out an F-Test. Estimate the Restricted model, assuming the null hypothesis is correct. 
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Estimate a regression using Tools>Data Analysis>Regression, using column A as the Y-Range 
and columns B only as the X-Range. Save to a new worksheet called “Restricted.”  

 
 
We can now open the F-test template and fill in the Input data. 
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7.3.2 Adding regional dummy variables 

Next, we can add dummy variables with several categories such as the regional dummies. Our 
model becomes: 

1 2 1 2 3

4 5 1                    + ( )

WAGE EDUC SOUTH MIDWEST WEST

BLACK FEMALE BLACK FEMALE e

= β +β + δ + δ + δ

δ + δ + γ × +
 

 
Since the dummies are already present in the file, we simply estimate the model using 
Tools>Data Analysis>Regression, after arranging the columns for the X-Range variables. 

 
 
Use column A as the Y-Range and columns B through H as the X-Range. Save to a new 
worksheet called “Regions.”  
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The output will provide us with the unrestricted model to test the joint hypothesis 
of 0 1 2 3: 0, 0, 0H δ = δ = δ = . 
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Under the null hypothesis, the restricted model is the full (unrestricted) model from the previous 
section. If we fill in the Data Inputs in the F-Test template for this test, we fail to reject the null 
hypothesis at 5% level. 

 

7.3.3 Testing the equivalence of two regressions 

To test the equivalence of the wage equations for the south region versus the reminder of the 
country, we create an interaction variable for each variable in the regression model with the 
dummy variable south. In other words, our equation 

1 2 1 2 1( )WAGE EDUC BLACK FEMALE BLACK FEMALE e= β +β + δ + δ + γ × +  
 
becomes 

1 2 1 2 1 1

2 3 4

5

( )

            ( ) ( ) ( )

            ( )

WAGE EDUC BLACK FEMALE BLACK FEMALE SOUTH

EDUC SOUTH BLACK SOUTH FEMALE SOUTH

BLACK FEMALE SOUTH e

= β +β + δ + δ + γ × + θ

+ θ × + θ × + θ ×

+ θ × × +

 

 
First we have to create the interaction variables as explained in the previous section. 
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After labeling and writing the formulas, copy the formulas for all 1,000 observations. 

 
 
Once the interaction variables are created, we estimate the model by Tools>Data 
Analysis>Regression, using column A as the Y-Range and columns B through J as the X-
Range. Save to a new worksheet called “FULL.” 

 
 
The results will give us the unrestricted model results.  
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To test the hypothesis that there is no difference between the model for the south and the rest of 
the nation, we have to test the joint hypothesis 0 1 2 3 4 5: 0H θ = θ = θ = θ = θ =  against the 
alternative that at least one of the five hypotheses is not true. Under the null hypothesis, the 
restricted model will be 

 
 
If we input the Data into the F-Test template, we will get:  
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7.4 INTERACTIONS BETWEEN CONTINUOUS VARIABLES 

When we include the product of two continuous explanatory variables in a model, we alter the 
relationship between each of them and the dependent variable. Reporting and interpreting the 
results require care. 

The model we use here is based on a "life-cycle" model of the effects of age and income on a 
person's expenditures on pizza. We believe that as a person ages, the marginal effect of income 
will probably change (the marginal propensity to spend on pizza probably falls). Since we assume 
that the effect of income depends on age, we include an interaction variable that is the product of 
these two variables. The model we will estimate is 

1 2 3 4 ( )PIZZA AGE INCOME INCOME AGE e= β +β +β +β × +   
 
where  PIZZA = individual’s annual expenditure on pizza, in dollars 
 AGE = the age of the individual in years 
 Y = the annual income of the individual, in dollars 
 
Open pizza.xls to estimate the above model and create the interaction variable after arranging the 
order of the explanatory variables. 
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Copy the formula to all 40 cells. 

 
 
Estimate the model. 
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The effect of age and income are no longer given by their estimated coefficients. Instead we must 
calculate the marginal effects. 

To find the marginal effects of age and income, we take the first derivative of the pizza 
function, with respect to the variable of interest. We find that the marginal effect of age on pizza 
expenditures is b2 + b4Y and the effect of income is b3 + b4AGE. These will be estimated and 
calculated using Excel. In cell A21, type the label AGE and in cell A22, type the label INCOME. 
In cell A24, type the label age effect and in cell A25, type the label income effect. In cell B24, 
type =$B$16+(B18*B22) and in cell B25, type =$B$17+($B$18*B21). This template can now be 
used to calculate the marginal effects, given different levels of age and/or income. Below is an 
illustration of two examples. 

 
 
The formulas provide us with the marginal effect of AGE for incomes 90,00 and 25,000 and 
marginal effect of INCOME at age 30 and 50. 

 

7.5 DUMMY VARIABLES IN LOG-LINEAR MODELS 

Consider the model: 

1 2 1ln( )WAGE EDUC FEMALE e= β +β + γ +  
 
The calculation of the exact effect of a dummy variable in log-linear model is slightly more 
complicated. We will use cps_small.xls data to illustrate the calculations. Label cell D1, ln(wage) 
and type the formula in D2 =ln(A2). Copy the formula down all the cells.  
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Estimate the log-linear wage equation by using ln(wage) as the Y-Range and EDUC and 
FEMALE as the X-Range variables. 

 
 
The results are: 
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We can calculate the exact effect of the female dummy given the output as: 

 

The marginal effect will be a nonlinear function of the parameters: 

 
 
Similarly, we can calculate other nonlinear marginal effects when we include interaction terms. 
Estimate the following model: 

1 2 3 1ln( ) ( )WAGE EDUC EXPER EDUC EXPER e= β +β +β + γ × +  
 
First, we need to create the interaction variable and estimate this log-linear model using the 
ln(wage) as Y-Range and EDUC, EXPER and educXexper as the X-Range variables. 

 

Given the coefficient estimates from the regression, we can calculate the approximate marginal 
effect of experience using 
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The marginal effect will be again a nonlinear function of the parameters for education of 16 
years. 
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CHAPTER  8 

Heteroskedasticity 

Chapter Outline 
8.1 The Nature of Heteroskedasticity 
8.2 Using the Least Squares Estimator 
8.3 The Generalized Least Squares Estimator 
 8.3.1 Transforming the model                            
 8.3.2 Estimating the variance function                 
 8.3.3 A heteroskedastic partition 

8.4 Detecting Heteroskedasticity 
 8.4.1 Residual plots 
 8.4.2 The Goldfeld-Quandt test 
 8.4.3 Testing the variance function 
  

8.1 THE NATURE OF HETEROSKEDASTICITY 

In simple and multiple linear regression models of earlier chapters, we had assumed all the 
assumptions of the Classical Linear Regression (CLRM) model have been met.  

1 2i i iy x e= β +β +  
 
where yi is the dependent variable, xi is the ith observation on the independent variable, 1β and 2β  
are the unknown parameters and ei is the random error. The error assumptions of CLRM are: 

( ) 0iE e =    ( ) 2
iVar e = σ    ( ) 0iCov e =  

 
One of the above mentioned assumptions of the linear regression model is that the variance of the 
error term and of the dependent variable is constant across all of the observations. If this 
assumption is not met, OLS estimator is still unbiased and consistent but the least square standard 
errors and the tests based on these standard errors are neither consistent nor asymptotically valid. 
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8.2 USING THE LEAST SQUARES ESTIMATOR 

In Chapter 3, we introduced a model of food expenditures as a function of income. At each 
income level, a household chooses its level of food expenditures. It seems reasonable that 
households with higher incomes have more choices, anywhere from cheap and simple to 
extravagant food. This suggests that the variance for high-income households is greater than that 
of low-income households. The consequences of estimating the parameters using the least square 
estimator, if heteroskedasticity is present, are that the standard errors that Excel reports are 
wrong. Therefore, the t-statistics, p-values, and confidence intervals are also wrong. Let's return 
to that model and our Excel results to reconsider our assumptions about the variance of the 
model. 

Open food.xls. Estimate the regression, using food expenditures as the Y-Range and income 
as the X-Range. Choose Line Fit Plots under the Residuals option to produce a chart of the 
estimated regression line. After some formatting, the graph should look like 

 
As income increases, the data points are scattered further and further from the estimated 
regression line. The residuals, the vertical distances between the regression line and the individual 
observations, are getting larger as income increases. The graph above, therefore, suggests that σ2 
is not constant, but is greater for larger income households indicating heteroskedasticity. 

 
 
Since, with heteroskedasticity, the reported standard errors are incorrect, we need a method for 
determining the correct standard errors for our least squares estimators. We can then recalculate 
our t-stats and confidence intervals with these heteroskedasticity adjusted standard errors.  

One such adjustment is White's Heteroskedasticity Consistent Standard Errors, which for 
the simple regression model is.  

Food Expenditures Regression
y = 83.4160x + 10.2096
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The square root of this is the estimated standard error for b2. Some statistical packages will 
calculate White's standard errors automatically. Excel does not, but we can use the standard Excel 
functions to calculate it "by hand". 

Return to the data contained in food.xls. Estimate another regression, choosing the Residuals 
option.  

• From the regression output, Copy the residuals from the residual output to the worksheet 
containing the original data and Paste these residuals in column C. Include the label.  

• Label column D “ehat^2” and square the values in column C here by typing =C^2 in cell 
D2 and copy the formula down the column.  

• Label column E “xbar”. In cell E2 type =AVERAGE(B2:B41) where column B contains 
the income.  

• Label column F “(x-xbar)^2”. In cell F2 type =(B2-$E$2)^2. Recall that the dollar sign 
anchors the cell containing “xbar”.  

• Label column G “numerator”. In cell G2 type =F2*D2. Highlight cells F2 and G2, and 
copy these formulas down the columns. 

 
 

• In cell F42, type =SUM(F2:F41) to sum the column; 
• in cell G42, type =SUM(G2:G41).  
• Label B44, White's var(b2), and B45 White's se(b2).  
• In cell C44, type =G42/(F42^2)  
• and in cell C45, type =SQRT(C44). 

 
The results are 
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Excel's regression output reports the standard error for b2 as 2.093263531 which is incorrect due 
to the existence of heteroskedasticity. White's standard error is actually different so are the 
corrected t-stat and confidence intervals. While it usually the case that the corrected standard 
errors, it is not always true as you can see from this example. You should recalculate and report 
the corrected t-stat and confidence interval, do not report those produced in the regression output. 

8.3 THE GENERALIZED LEAST SQUARES ESTIMATOR 

Since the least squares is inefficient in heteroskedastic models, we may wish to use Generalized 
Least Square (GLS) which is the Best Linear Unbiased Estimator. GLS estimator works by 
transforming the model into a homoskedastic one and applying OLS to the transformed model.   

8.3.1 Transforming the model 

Since we have ( ) 2var i ie = σ , we can get constant error variance by dividing ie  by iσ . To 
transform the model, we will weigh the observations using iσ . For the food expenditure model,  

1 2
1i i i

i i i i

y x e
= β +β +

σ σ σ σ
 

 
We saw in the graph of the regression that the estimated error terms seem to get larger as income 
increases. So we can assume the variance of the model is proportional to income and can be 
modeled as 2var( )i i ie x= σ . It can be shown that, if we transform our original data by dividing all 
observations by the square root of xi, the new, transformed model is homoskedastic and we can 
estimate the new model using least squares where the t-stats and confidence intervals are correct. 

To estimate the food expenditure model, where we want to weight the data by 1/ ix . Go 
back to the worksheet containing the original data on food expenditures and income.  

 
• Label column C SQRT(x) and columns D, E and F, INT*, X* and Y* respectively.  
• In cell C2, type =SQRT(B2), where cell B2 contains the first observation on income.  
• In cell D2, type =1/C2. This creates a new intercept term, not equal to one anymore.  
• In cell E2, type =B2/C2. 
• In cell F2, type =A2/C2.  
• Highlight cells C2 through F2. Copy the formulas down the column. 
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Estimate a regression, using Y* as the Y-Range and INT* and X* as the X-Range.  

 
• Include labels and check the Labels box.  
• Check the Constant is Zero box since we now have our new, transformed intercept term.  
• Place the output on the worksheet named GLS and click OK. 

 
 
The regression results are: 

 
 
The estimates, b1 and b2, differ from the original regression results. However, the interpretations 
are the same. Transforming the data in the manner we did changed a heteroskedastic model to a 
homoskedastic model; not the meanings of our estimates. The GLS standard errors are lower than 
those calculated using White's approximation. This is to be expected because the GLS procedure 
is more efficient and provides smaller standard errors, higher t-stats and narrower confidence 
intervals. 
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8.3.2 Estimating the variance function 

In the above example, the observation’s standard error (or what it is proportional to) is known. In 
most cases this information will not be known and we will have to estimate it. This turns the GLS 
estimator into feasible GLS (FGLS).  

The first step is to choose a model for variance that is some function of the independent 
variables. A common model of the variance uses the exponential function: 

( )2
1 2 2exp ...i i s isz zσ = α + α + + α  

 
where the isz  are independent variables and α ’s are the unknown parameters. Taking the natural 
logarithm, substituting the least squares residuals for the unobservable 2

iσ , and adding an error 
term gives you a regression model that can be estimated for iα . 

( ) ( )2 2
2ˆln lni i i i i ie v z v= σ + = α + α +  

 
where the 2

îe  are from least squares estimation of the original heteroskedastic regression model. 
Let log( )iz income= .  

To estimate this model using the food expenditure data, go back to the worksheet containing 
the original data on food expenditures and income.  

 
• Label column C log(income) and type =ln(B2) in cell C2.  
• Copy and paste the residuals from the initial regression to column D.  
• Label columns E and F, resid2 and log(resid2), respectively.  
• In cell E2, type =D2^2, where cell D2 contains the first observation on residuals.  
• In cell F2, type =LN(E2).  
• Highlight cells E2 and F2 and copy the formulas down the column. 

 
 
Estimate a regression, using log(resid2) as the Y-Range and log(income) as the X-Range.  

Include labels and check the Labels box. Place the output on the worksheet named FGLS and 
click OK. The regression results are: 
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8.3.3 A heteroskedastic partition 

To illustrate a model with a heteroskedastic partition, we use a model of wages as a function of 
education and experience. In addition a dummy variable is included that is equal to one if the 
individual lives in a metropolitan area. This is an intercept dummy variable indicating people 
living in metropolitan areas make higher wages relative to those living in rural with similar level 
of experience and education.  

First, open cps2.xls and highlight columns D through I and Edit>Delete the columns.  

1 2 3 4i i iwage educ exper metro e= β +β +β +β +  
 
Estimate the model using Tools>Data Analysis>Regression with WAGE as the Y-Range and 
EDUC, EXPER and METRO as the X-Range. 

  
 
Next, estimate each subset (metro and rural) separately using least squares and save the standard 
errors of the regression.  

 
• Highlight all the columns of the data, including labels, choose Data>Sort from the menu 

bar.  
• Click on the down-arrow in the Sort By box. Choose METRO.  
• Check either Ascending or Descending option.  
• Check the Header Row option, since we included the labels and click OK. 
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Looking at the METRO column, you will observe that the column will contain zeros till row 194 
and after that row, METRO will be one. 

 
 
Now we must estimate two regressions, using the first half of the data in the first one (METRO = 
0), and the second half of the data in the second regression (METRO = 1). The only output we're 
interested in from these regressions is the estimated variance of the model. 

Estimate a regression on the data, using cells A2 through A193 for the Y-Range and cells B2 
through C193 for the X-Range. DO NOT include labels and don’t include the METRO variable 
in column D. Place the output on a worksheet named “regression 1.” 
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Repeat the procedures above, but now include cells A194 through A1001 as the Y-Range and 
cells B194 through C1001 as the X-Range. Save output to a worksheet named “regression 2.” 

 
 
In order to obtain a homoskedastic model, we will transform the data by using the estimated 
variances from each partition. The estimated variances of the models are what we are interested 
in; no other output from the regressions is important at this point. We divide the data on the first 
193 observations by the square root of the estimated variance from a regression using just those 
observations, and divide the last 808 observations by the square root of the estimated variance 
obtained from the regression using just these data. Then we "pool" the transformed data and 
perform generalized least squares estimation to obtain the correct estimates.  

The simplest thing to do at this point is to simply write down the values of the MS Residuals 
from the ANOVA tables of the regressions; metro and rural. From metro, the value is 
31.8237318; from rural, it is 15.24298659. Transform the first 193 observations using the square 
root of the estimated variance from rural and the rest of the observations using the square root of 
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the estimated variance from metro as shown in Section 8.3.1 of this manual. Estimate a 
regression, using wage* as the Y-Range and int*, edu*, exper* and metro* as the X-Range 
where the stars represent the transformed values for the intercept (int), years of education (edu), 
years of experience (exper) and dummy variable for metropolitan area (metro), respectively. 
Include all 1000 observations. Include labels and suppress the intercept by checking the Constant 
is Zero box. 

8.4 DETECTING HETEROSKEDASTICITY 

8.4.1 Residual plots 

If the regression errors are homoskedastic, when we plot the residuals, there should be no 
systematic pattern evident. If the errors are heteroskedastic, we may be able to detect a particular 
pattern in the residuals and perhaps even discover the form of the heteroskedasticity. 

Let’s use the wage model to plot the least square residuals against the metro dummy. Open 
cps.xls. Delete all the columns except wage, educ, exper, metro and save the file as 
cps_modified.xls. Estimate a regression, wage as the Y-Range and educ, exper and metro as the 
X-Range. Under the Residuals options, choose Residual Plots. This will produce a graph of the 
residuals, plotted against each of the explanatory variables. 

 
 
Let’s look at the plot against the metro dummy variable. After formatting, it should look similar 
to this. 
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In this plot, the least squares residuals are grouped according to rural (metro=0) or metropolitan 
(metro=1). Wider variation of residuals at metro=1 indicates higher variance for these 
observations and evidence of groupwise heteroskedasticity.  

8.4.2 The Goldfeld-Quandt test 

Although plots are helpful in diagnosing heteroskedasticity, the Goldfeld-Quandt formally tests 
for equal variances. It is a type of F-test and the steps are to order the data based on variance, split 
the data into parts, compute the estimated variances, calculate the test statistic 2 2

1 2ˆ ˆGQ = σ σ , and 
compare to an F-critical value, based on T1-K numerator and T2-K denominator degrees of 
freedom. If heteroskedasticity is present, the GQ test statistic should be large, and we would 
reject a null hypothesis of equal variances. 

Returning to the wage model, where metro F is 31.824 and rural F is 15.243. Open a new 
worksheet and name it “GQ test”. Create the following template to use for any Goldfeld-Quandt 
Test. 
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Fill in the Input Data as T1=808 and T2=193, K=2, and Alpha should be .05, for testing at the 
5% level. From the metro worksheet, highlight cell D13 (the MS residual from the ANOVA 
table), right-click and choose Copy. Go back to GQ test worksheet and Paste the value into cell 
B6. Remember to always place the larger of the estimated variances in the numerator of the 
formula for the GQ test statistic. Copy cell D13 from the rural worksheet to cell B7 of GQ test. 
The resulting template is  

 
 
Let's test for heteroskedasticity in the food expenditures model. Formally, we test the null 
hypothesis H0: 2 2

iσ = σ  against the alternative H1: 2 2
i ixσ = σ .  

Since the variance is an increasing function of income we have to sort the data in an 
ascending order by income. Open the original data on food expenditures and income, food.xls.  

 
• Highlight both columns of the data, including labels, choose Data>Sort from the menu 

bar. 
• Click on the down-arrow in the Sort By box. Choose income.  
• Check the Ascending option;  
• Check the Header Row option, since we included the labels and click OK. 
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Looking at the column containing income, the numbers should be increasing as you look down 
the column. 

 
 
Now we must estimate two regressions, using the first part of the data in the first one, and the 
second part of the data in the second regression. Because there is no natural dividing point, we 
will break the ordered sample into two equal halves. The only output we're interested in from 
these regressions is the estimated variance of the model. 

Estimate a regression on the data, using cells A2 through A21 for the Y-Range and cells B2 
through B21 for the X-Range. Do NOT include labels. Place the output on a worksheet named 
“regression 1.” 

 
 
Repeat the procedures above, but now include cells A22 through A41 as the Y-Range and cells 
B22 through B1 as the X-Range. Save output to a worksheet named “regression 2.” 
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Fill in the Input data. T1 and T2 both equal 20, K=2 and Alpha should be .05, for testing at the 
5% level.  

 
• From the regression 1 worksheet, highlight cell D13 (the MS residual from the ANOVA 

table), right-click and choose Copy.  
• Go back to GQ test worksheet and Paste the value into cell B7. Remember to always 

place the larger of the estimated variances in the numerator of the formula for the GQ test 
statistic.  

• Copy cell D13 from the regression 2 worksheet to cell B6 of GQ test.  
 
The resulting template is  

 
 
We reject the null hypothesis and conclude that heteroskedasticity IS present. If we assume 
proportional heteroskedasticity, we would proceed as in section 11.3. If we couldn't assume any 
particular form of the heteroskedasticity, then we should at least calculate White's standard errors 
and report the corrected t-statistics and confidence intervals. 
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8.4.3 Testing the variance function 

There are many other tests to test for the existence of heteroskedasticity. In this section, two more 
of these tests will be discussed; Breusch-Pagan and White’s tests. In both of the tests the null is 
homoskedastic errors and alternative is heteroskedastic errors. Both of the tests also require 
auxiliary regressions.  

First, we will illustrate the Breusch-Pagan test using the food expenditure data. Open the 
original series, food.xls and estimate the regression, click the residual option to save the residuals. 
Then, copy and paste the residuals to column C in the data sheet. Label D1 “resid2” and type 
=C2^2 in D2. 

 
 
Next, regress residuals on income. 

 
 
The test statistic (LM) is calculated by multiplying the N*R2 and has a 2

1s−χ  distribution.  
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White’s test is just a minor modification to Breush-Pagan test. Add one more column to the data 
and label it income2. This column will contain the squared income variable. After putting in the 
formula and copying it down, regress resid2 on income and income2. Recall that you need to get 
the income and income2 in adjacent columns to be able to run the regression. The test statistic is 
again the product of N and R2 which has a 2

1s−χ  distribution.  
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The results for both of the tests indicate a rejection of the null hypothesis of no heteroskedasticity. 
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CHAPTER  9 

Dynamic Models, Autocorrelation, 
and Forecasting 

CHAPTER OUTLINE 
9.1 Lags in the Error Term 
9.2 Area Response for Sugar 
9.3 Estimating an AR(1) Model 
 9.3.1 Least squares 
 

9.4 Detecting Autocorrelation 
 9.4.1 The Durbin-Watson test 
 9.4.2 An LM test 
9.5 Autoregressive Models 
9.6 Finite Distributed Lags 
9.7 ARDL Model 
 

9.1 LAGS IN THE ERROR TERM 

The multiple linear regression model of Chapters 5 and 6 assumed that the observations are not 
correlated with one another. This assumption is not realistic if the observations are drawn 
sequentially in time. With times-series data, where the observations follow a natural ordering 
through time, there is a possibility that successive errors are correlated with each other. Shocks to 
a model may take time to work out and effects may carry over to successive time periods. The 
result is that the error term in period t can affect the error term in period t+1, or t+2, and so on.  
Somehow, we must take these lasting effects into account. 

In the first example the supply response for an agricultural crop is modeled as a log-log linear 
model where area planted (acres) depends on price. The first dynamic model we will consider is 
one with a lag in the error term.  

1 2ln( ) ln( )t t tA P e= β +β +  

1t t te e v−= ρ +  
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Where ρ  (rho) is the parameter that describes the relation between te and 1te − , tv  is the new 
random error term. For stability (and stationarity) of the model, 1 1− < ρ < .  

9.2 AREA RESPONSE FOR SUGAR 

First, we will estimate the above mentioned model using least squares. Open bangla.xls.  
 
• Label columns C and D as LN(P) and LN(A) respectively.  
• In cell C2, type =LN(A2), copy this formula to cell D2.  
• Highlight cells C2 and D2, and copy the formulas down the columns.  

 
 
Estimate a regression, using LN(A) as the Y-Range and LN(P) as the X-Range. Include labels. 
Check the Residuals option so that the estimated errors are produced and click OK. 

 
 
The least squares estimates are: 
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Since we are using times-series data, we should explore the possibility of autocorrelation.  
Visually, we can plot the residuals against time and see if we can detect any patterns. 

Return to the worksheet containing the original data.  
 
• Label cell E1 t, for time.  
• Type “1” in cell E2.   
• Type =E1+1 in cell E3.  
• Highlight cells E2 and E3, place cursor on the lower right hand corner of the highlighted 

area until it turns into a cross-hatch.  
• Left-click and drag down the column to fill in the values in ascending order. 

 
 
Return to the worksheet containing the regression output.  

 
• Copy residuals to the worksheet containing the original data and Paste in column F.  
• Create an XY Scatter graph with t on the horizontal axis and Residuals on the vertical 

axis.  
 
The results will look like 
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Looking at the values of the residuals (ehat) and at the graph above, there seems to be a tendency 
for negative values to follow negative values, and positive values to follow positive values. This 
is consistent with positive correlation between successive terms. While such a conclusion about 
autocorrelation is subjective, we will later look at a more formal test. For now, however, it does 
appear that there is a problem. 

We can also check the correlation between the ehat and the lagged values. Rename the 
residual column ehat, create a new column and call is ehat_1. Lag the ehat column by copying 
F2-F35 and paste it to G3. Delete F2 and G36 to make the columns even. Go to Tools>Data 
Analysis>Correlation. Put ehat and ehat_1 in the range and hit OK. The output indicates about 
.40 correlation between the errors one period apart. 

 

 

9.3 ESTIMATING AN AR(1) MODEL 

When the errors follow and AR(1) model, 1t t te e v−= ρ + , the least squares assumption 4 is 
violated. Least squares is unbiased and consistent, but no longer efficient. The reported standard 
errors are no longer correct, leading to statistically invalid hypothesis tests and confidence 
intervals. 

9.3.1 Least Squares 

In the previous chapter, we transformed our data so that we could move from a heteroskedastic 
model to a homoskedastic. The same type of procedure can be used to correct for first order 
autoregressive errors AR(1). Our objective is to transform the model 

1 2t t ty x e= β +β +  where 1t t te e v−= ρ +  
 
such that the autocorrelated term et is replaced by the uncorrelated error term vt. After some 
substitution and rearranging, the transformed model we obtain is 

1 1 2 1(1 ) ( )t t t t ty y x x v− −− ρ = β −ρ +β −ρ +  
 
All we need to do is to transform the dependent variable, intercept, and explanatory variable as 
above and proceed with the generalized least squares estimation. The first problem is ρ is 
unknown and must be estimated and observe that we now have T-1 observations since we lose the 
"first" one. 

Estimate the original model and store the residuals. Since  
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and we already have our residuals from the least squares estimation, we're ready to go! 

Return to the worksheet containing the original data and the residuals. Label cells G1, H1, 
and I1 as sum(et*et-1), ssq(et-1), and rhohat respectively. In cell G2, type 

 
=SUMPRODUCT(F3:F35,F2:F34) 
 

This corresponds to the numerator in the formula above. In cell H2, type  
 
=SUMSQ(F2:F34) 

 
This calculates the denominator. Finally, in cell I2, divide G2 by H2 by typing =G2/H2.  The 
result is 0.3992. 

 
 
Now, to deal with the issue of transforming the first observation for the transformed model, we 
have y1 = β1 + x1β2 + e1 with an error variance of var(e1)= ( )2 2 2/ 1e vσ = σ −ρ .  The transformation 

that gets to where we want (a variance of 2
vσ ) is multiplication of the terms in the model, for the 

first observation, by 21−ρ . 
Use the worksheet with columns P, A, LN(P), LN(A). Label columns E, F, and G as y*, int* 

and x* respectively.  
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• In cell E2, type =SQRT(1-(0.3992^2))*D2.  
• In cell F2, type =SQRT(1-(0.3992^2)).  
• In cell G2, type =SQRT(1-(0.3992^2))*C2.  

 
The first observation for the transformed model is now complete. For the remaining observations: 

 
• In cell E3, type =D3-(0.3992*D2).  
• In cell F3, type =1-0.3992.  
• In cell G3, type =C3-(0.3992*C2).  
• Highlight cells E3 through G3. Copy the formulas down the columns. 

 

 
 
Run a regression, using y* as the Y-Range and int* and x* as the X-Range. Include labels as 
usual AND suppress the intercept by checking the Constant is Zero box. Place output on a new 
worksheet names GLS and click OK. 

 
 
The generalized least squares results are: 

 
 
Once again, interpretations of the estimates are as usual. The price elasticity of sugar cane area 
response seems to be one. 
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9.4 DETECTING AUTOCORRELATION 

We will consider two formal tests to test for the existence and extent of autocorrelation; Durbin 
Watson and LM (Lagrange Multiplier) serial correlation tests.  Both tests test the hypothesis H0: ρ 
= 0 versus the alternative H1: ρ > 0. If ρ is zero, then no transformation is necessary and ordinary 
least squares estimation is BLUE.  

9.4.1 The Durbin-Watson test 

The Durbin-Watson test statistic uses the residuals from the least squares procedure and is 
closely related to ρ̂ . The statistic is 

( )2
1
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2
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ˆ ˆ

ˆ
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t t
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t
t

e e
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e
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=

=

−
=
∑

∑
 

 
It is approximately equal to ˆ2(1 )−ρ . 

If the estimated value of ρ is zero, the Durbin-Watson test statistic equals 2. If the estimated 
value of ρ is one, the Durbin-Watson test statistic equals 0. Therefore, a low value of the DW test 
statistic suggests the null hypothesis should be rejected. The distribution of the DW test statistic 
is difficult and Excel cannot compute the p-value associated with d, but tables are available for 
performing the hypothesis test [see www.bus.lsu.edu/hill/poe], now called the Durbin-Watson 
bounds test.  
 

( )2
1

2
ˆ ˆ

T

t t
i

e e −
=

−∑  = sum of squared differences =SUMXMY2(F3:F35,F2:F34) = 3.54386803 

 
2

1
ˆ

T

t
i

e
=
∑  = sum of squared residuals: = SUMSQ(F2:F35) = 3.0316 

 
Using the formula above, we calculate the Durbin-Watson statistic to be d ≅ 1.169 as follows: 

The least squares residuals for bangle.xls are stored in cells F2:F35 in the spreadsheet. The 
numerator and the denominator of the DW statistic can be obtained using the Excel functions 
SUMXMY2, and SUMSQ, respectively. 

The decision rule for the Durbin-Watson bounds test is  
 
• if d > upper bound, fail to reject the null hypothesis of no serial correlation,  
• if d < lower bound, reject the null hypothesis and conclude that positive autocorrelation is 

present,  
• if lower bound < d < upper bound, the test is inconclusive.  
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With T=34 and K=2, the lower bound is 1.393 and the upper bound is 1.514.  Since d < the lower 
bound, we reject the null hypothesis that ρ is zero, and find evidence of positive autocorrelation. 

9.4.2 An LM test 

Another way to test for autocorrelation is to use test whether residuals are correlated with one 
another using the LM test. This test is based on the auxiliary regression where you regress least 
square residuals on the original regressors and lagged residual(s). If the auxiliary regression 
explains sufficient variation in t̂e , then we conclude there is autocorrelation.  

Now, let’s see how it works in Excel. Return to the worksheet containing the original 
data for bangla.xls, include the logs of the data, and the residuals.  

• Insert a new column and label it lagged residuals.  
• Write 0 into cell E2.  
• In cell E3, type =G2, where G2 contains the first residual from the regression output and 

copy the formula down the column. 
 

 
 

Once we created the lagged values of the residuals, we can now run the regression, using 
residuals as the Y-Range and LN(P) and lagged residuals as the X-Range. Since the explanatory 
variables need to be next to each other, you will have to move some of the columns around. Do 
NOT suppress the intercept and name the worksheet LM test. Click OK.  
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Recall that Excel reports a p-value based on a two-tailed test.  We would conclude that ρ > 0, 
testing at the 5% level, but we cannot reject the null hypothesis H0: ρ = 0 at the 1% level. The LM 
scalar is calculated by N*R2 where N and R2 are the number of observations and the coefficient of 
determination in the auxiliary regression and has a 2

(1)χ  distribution if the null hypothesis is true. 
The test statistic value in this case is 34* 0.16=5.44 . Wwe reject the null hypothesis and conclude 
that there is significant autocorrelation. 

9.5 AUTOREGRESSIVE MODELS 

In addition to incorporating lagged values of error term into a regression equation, we can add 
lagged values of dependent and/or independent variables. Autoregressive models include lags of 
the dependent variable as regressors. The AR(p) model has p lags of ty  as regressors. 

1 1 2 2 ...t t t p t p ty y y y v− − −= δ + θ + θ + + θ +  

We will use the inflation.xls to estimate an AR(3) model of inflation rate. Open the data file and 
add three columns and label them INFLAG1, INFLAG2 and INFLAG3. Copy the INFLN column 
and paste it to INFLAG1 starting from cell G4, to INFLAG2 starting from cell H5 and finally to 
INFLAG3 starting from cell I6 as shown below. 

 
 
Then, estimate the model using INFLN as the Y-Range and INFLAG1 INFLAG2 and INFLAG3 
as the X-Range variables. Since there area missing observations for each column, make sure to 
start from row 6, the first row for which there are no missing observations. 
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The result is: 

 

9.6 FINITE DISTRIBUTED LAG MODELS 

Finite distributed lag models contain independent variables and their lags as regressors.  

0 1 1 2 2 ...t t t t q t q ty x x x x v− − −= α +β +β +β + +β +  
 
Using the inflation.xls, let’s model the inflation rate as a function of the percentage change in 
wages and three lags of wages. Open the original file and add three columns. Label them 
pcwage_L1, pcwage_L2 and pcwage_L3. Copy the PCWAGE column and paste it to pcwage_L1 
starting from cell F4, to pcwage_L2 starting from cell G5 and finally to pcwage_L3 starting from 
cell H6 as shown below. 
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Observe that we now have T −  n complete observations since we lose observations when we 
create the lags. Now run the regression with T −  n observations. 

 
 
The least squares results are: 
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9.6 AUTOREGRESSIVE DISTRIBUTED LAG MODELS (ARDL) 

Finally, we consider a model that contains both finite distributed lags and is autoregressive.  

0 1 1 1 1 2 2.. ...t t t q t q t t p t p ty x x x y y y v− − − − −= δ + δ + δ + + δ + θ + θ + + θ +  
 
ARDL (p, q) model has p lags of the dependent variable, yt and q lags of the independent variable 
xt. Let’s illustrate ARDL (2,3) model for the inflation data. Modify the inlation.xls to incorporate 
the two lags of INFLN and three lags of PCWAGE 

 
 
Observe the missing observations due to lags. Run the regression starting from the 6th observation 
using the INFLN as Y-Range and PCWAGE, its three lags, and two lags of INFLN as the X-
Range 

 
 
The least squares results are: 
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CHAPTER  10 

Random Regressors and Moment-
Based Estimation 

CHAPTER OUTLINE 
10.1 Least Squares with Simulated Data 
10.2 Instrumental Variables Estimation with  
         Simulated Data                          
         10.2.1 Correction of IV standard errors 
         10.2.2 Corrected standard errors for    
                    simulated data 
10.3 The Hausman Test: Simulated Data 
10.4 Testing for Weak Instruments: Simulated 
         Data  
10.5 Testing for Validity of Surplus Instruments:  
         Simulated Data 

10.6 Estimation using Mroz Data 
        10.6.1 Least squares regression 
        10.6.2 Two-stage least squares 
10.7 Testing for Endogeneity of Education 
10.8 Testing for Weak Instruments 
10.9 Testing for Validity of Surplus Instruments 

10.1 LEAST SQUARES WITH SIMULATED DATA 

When the explanatory variables are random, the relationship between x and the error term, e, is 
crucial in deciding whether ordinary least squares estimation is appropriate. If x and e are 
uncorrelated, then least squares can, and should, be used. However, if the cov(x, e) ≠ 0, then the 
least squares estimator is biased and inconsistent. In this case, instrumental variables (IV) / two-
stage least squares estimation process gives us a consistent but inefficient estimator. IV is not 
directly available in Excel as a built-in function. However, we will show that it is easy to perform 
IV estimation using Excel functions you are already familiar with.  

We will use ch10.xls to explore the properties of the least squares estimator when cov(x, e) ≠ 
0. The data set contains simulated data of sample size 100, 0.6xeρ = , where 

1 2( ) 1 1E y x x= β +β = +  and , ~ (0,1)i ix e N .  
First, get the summary statistics for the dataset where z1, z2, and z3 are the instrumental 

variables we will consider later. Go to Tools>Data Analysis>Descriptive Statistics 
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Below is a sample of the descriptive statistics provided by Excel. 

 
 

Next estimate the simple regression of y on x using y as the Y-Range and x as the X-Range. 
Choose the Residuals option for future reference and place the output in a worksheet named LSE 
for random regress. Click OK.  
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The results are: 

 
 
Notice that the estimated slope is 1.7, when in fact the true slope of the artificial data is 1. These 
results are due to the correlation between the error term and explanatory variable that has been 
built into the data.  

10.2 INSTRUMENTAL VARIABLES ESTIMATION WITH SIMULATED DATA  

Ch10.xls also contains two instrumental variables both of which are correlated to x yet 
uncorrelated with the error term. Since our problem is that the explanatory variable we are using 
is correlated with the error term, using these instrumental variables should help solve our 
problem. 

We will estimate a reduced form or 1st stage regression xi = α1 + α2z1i + ei to obtain the 
predicted values of xi, ˆix . Then, we use ˆix as an instrumental variable in the equation yi = β1 + 
β2 ˆix + ei. Estimation of this equation is the "2nd stage". Thus the name, 2-stage least squares.  

Return to the worksheet containing the simulated data, ch10.xls. Run a regression, using x as 
the Y-Range and z as the X-Range. Choose the Residuals option to obtain ˆix . Place output on a 
worksheet names 1st stage. 
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The "Predicted x" from the RESIDUAL OUTPUT is our instrumental variable. 

 
 
Copy cells B24 through B124 containing Predicted x over to the worksheet containing the 
original data. Now run another regression, using y as the Y-Range and Predicted x as the X-
Range. Place output on a worksheet named 2nd stage. 

 
 
The results of this Two-Stage Least Squares Estimation are: 
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The IV estimate of the slope 1.19 is closer to the true value of 1 but the standard errors are 
incorrect.  

10.2.1 Correction of IV standard errors 

In the simple linear regression model 1 2i i iy x e= β +β +  the 2SLS estimator is the least squares 
estimator applied to 1 2 ˆi i iy x e= β +β +  where ˆix  is the predicted value from a reduced form 
equation. So, the 2SLS estimators are  
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In large samples the 2SLS estimators have approximate normal distributions. In the simple 
regression model  
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The error variance 2σ  should be estimated using the estimator  
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with the quantity in the numerator being the sum of squared 2SLS residuals, or SSE2SLS. The 
problem with doing 2SLS with two least squares regressions is that in the second estimation the 
estimated variance is  

( )2

1 22
ˆ ˆ ˆ

ˆ
2

i i

wrong

y x

N

−β −β
σ =

−
∑

 

 
The numerator is the SSE from the regression of yi on ˆix , which is SSEwrong.  

Thus correct 2SLS standard error is 

( )
( ) ( ) ( )
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and the “wrong” standard error, calculated in the 2nd least squares estimation, is 
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( ) ( ) ( )

22

2 2 2 2

ˆˆ ˆˆ
ˆ ˆ ˆ

wrongwrong wrong
wrong

i i i

se
x x x x x x

σσ σ
β = = =

− − −∑ ∑ ∑
 

 
Given that we have the “wrong” standard error in the 2nd regression, we can adjust it using a 
correction factor 

( ) ( ) ( )
2
2 2

2 2 22
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ˆ ˆ

SLS SLS
wrong wrong

wrong wrong

se se seσ σ
β = β = β

σ σ
 

10.2.2 Corrected standard errors for simulated data 

To correct the inflated standard errors and modify the t-statistic and p-value with the correct 
standard error, return to the worksheet containing the original data.  

 
• Insert a new column and label it  residuals=y−b1−b2x.  
• Calculate residuals using the coefficients from the 2SLS estimation. In other words, in 

cell G2, type =y−1.101101099−1.192445082*A2, where A2 contains the first observation 
on x. Copy the formula down the column.  

• Label cell H1 sighat_2sls, cell H2 sighat_wrong, and cell H3 correction factor.  
• In cell I1, type =SQRT(SUMSQ(G2:G101)/98) where 98 is T-K. This cell calculates the 

square root of correct mean of squared errors which is the sighat_2sls.  
• In cell I2, type =SQRT(3.042), where 3.042 is the wrong MSE and its square root it the 

sighat_wrong.. 
• In cell I3, type =I1/I2 which calculates the correction factor.   

 



Random Regressors and Moment-Based Estimation   161 

 
 
This is our correct model standard error. 

 
 
Copy the correction factor, return to the worksheet 2nd stage and paste after the regression output. 
Then, create the corrected standard errors by multiplying the current standard errors with the 
correction factor. The correct t-stat will be obtained by dividing the coefficient estimates by the 
corrected standard errors. And you can calculate the correct p-value by typing =TDIST(D20,98,2) 
for a two-tailed test where D20 is the corrected t-stat. 
 

 
 
The results will be: 
 

 
 

The correct t-stat and p-value are quite different from those reported originally by Excel. 
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10.3 THE HAUSMAN TEST: SIMULATED DATA 

Since we don’t always know if the explanatory variables are endogenous or not, we can 
empirically check it using the Hausman test. We want to test H0: cov(x, e) = 0 against the 
alternative H1: cov(x, e) ≠ 0. The Hausman Test is a formal test of these hypotheses and can be 
based on using the residuals from the 1st stage estimation of 

1 1 1 2 2i i i ix z z v= γ + θ + θ +  
 
Denote the least squares residuals from the reduced form as îv . Include them in an artificial 
regression  

1 2 ˆi i i iy x v e= β +β + δ +  

Estimate this model by least squares and test the significance of îv  using a standard t-test.  

0

1

: 0 no correlation between  and 
: 0 correlation between  and 

H x e
H x e

δ =

δ ≠
 

 
If the null hypothesis is true, the ordinary least squares estimators are more efficient and should 
be used. If the null hypothesis is not true, the instrumental variables estimator is consistent and 
should be used.  

Return to the worksheet containing the data ch10.xls. Estimate a regression, using x as the Y-
Range and z1 and z2 as the X-Range. Make sure to click the residual box to get the residuals. 
Place the results on a worksheet named Hausman step 1. 

 
 
Copy cells C25 through C125 which contain the Residuals to the worksheet containing the 
original data and Paste. Move the columns x and Residuals together. Now, run the 2nd regression, 
using y as the Y-Range and x and residuals as the X-Range. Place the results on a worksheet 
named Hausman step 2. No need to store residuals for this step. 
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The regression output is: 

 
 
Based on the t-test of the coefficient on Residuals, we reject the null hypothesis of no correlation 
between x and e, and conclude that instrumental variable estimation is the procedure in this case. 

10.4 TESTING FOR WEAK INSTRUMENTS: SIMULATED DATA 

Instrumental variables must be as strongly correlated with the endogenous variable as possible. A 
standard rule of thumb is that they will at least have a t-statistic of 3.3 or F-statistic of 10 in the 
reduced form regression. 
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From the above output, t-statistic for the second instrumental variable is 2.28. Since the t-
statistics less than the rule of thumb of 3.3, usage of this instrumental variable may not yield 
satisfactory results.  

10.5 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS: SIMULATED 
DATA 

In addition to being strongly correlated with the endogenous variable, a “good” instrument needs 
to be uncorrelated with the error term. We can test the validity of the instrument by an LM test. 
LM test uses 2SLS residual 2ˆ SLSe , as the dependent variable, and all the available exogenous and 
instrumental variables as independent variables. LM statistic is calculated from this regression by 

2LM NR=  which has ( )
2
kχ  where k is the number of surplus instrumental variables. Estimate an 

auxiliary regression using the 2ˆ SLSe  from the 2nd step of 2SLS estimation, yi = β1 + β2 ˆix + ei as the 
dependent variables and use instruments as the independent variable. The output is: 

10.6 ESTIMATION USING THE MROZ DATA 

We will use the Mroz data to illustrate the endogenous variables with real data. Open file 
mroz.xls. This is a log-linear wage model on working woman. 

2
1 2 3 4ln( )WAGE EDUC EXPER EXPER e= β +β +β +β +  

10.6.1 Least squares regression 

 
The data set includes observations for non-working women. To eliminate the non-working 
woman, use the variable lfp (labor force participation). Delete the rows where lfp = 0. Next, create 
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lwage =ln(wage) and exper2=exper^2. Next, run the least squares regression model using the 
lwage as Y-Range and educ, exper, exper2 as X-Range. Include the labels, name the worksheet 
LSE and check the residual box. The results are: 

 

10.6.2 Two-stage least squares 

In this example, educ is considered the endogenous variable as it could be correlated with factors 
in the regression error term such as ability. In the 1st stage of the 2SLS estimation, we will 
estimate the first one by using the educ as Y-Range and exper, exper2 and mothereduc (the 
instrumental variable) as the X-Range. Keep the predicted values from the first stage to be used 
in the 2nd stage. 

 
 

Observe that the mothereduc is a good instrument with a t-statistic of approximately 8.6 which is 
greater than the rule of thumb of 3.3 
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Estimate the 2nd stage regression by using the lwage as Y-Range and exper, exper2 and 
predicted values of educ (from the previous regression) as X-Range. 

 

 
 
Do not forget to modify the standard errors, t-statistics and the p-values are described in the 
previous section. First we need to modify the model standard error. 

 

Then, apply the new standard error to the coefficient standard errors, t-statistics and p-values. 
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10.7 TESTING THE ENDOGENEITY OF EDUCATION 

We will use Hausman test to test whether educ is endogenous and correlated to the regression 
error term. First run the 1st stage regression using educ as the Y-Range and all other explanatory 
variables as the X-Range. We only need the residuals from the 1st step to use as an additional 
explanatory variable in the 2nd stage. For the second stage, use the lwage as the Y-Range and 
educ, exper, exper2, and residuals as X-Range.  

 
 
Based on the t-test of the coefficient on Residuals, we fail to reject the null hypothesis at 5% level 
of no correlation between x and e, and conclude that OLS estimation is appropriate. However, 
educ is endogenous at 10% level of significance. 

10.8 TESTING FOR WEAK INSTRUMENTS 

To test whether the relationship between the instruments and educ is strong enough, estimate the 
restricted and unrestricted reduced form equations and test the joint significance of the 
instruments. The unrestricted and restricted models have the following ANOVE tables: 
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Using the MSE from the above models, to test the instruments jointly, we can conduct an F-test 
where the unrestricted model has all exogenous variables and the restricted model has exper and 
exper2 as the explanatory variables. Recall that the rule-of-thumb threshold value for adequate 
instruments is an F-value of 10.0.  

 

10.9 TESTING THE VALIDITY OF SURPLUS INSTRUMENTS 

We can check the validity of the surplus instruments using the LM test. For this purpose, we need 
to run an auxiliary regression where the residuals are the Y-Range and all the exogenous 
variables are the  X-Range. We calculate the LM test statistic as N*R2 which is 0.3780714 for this 
example.  
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CHAPTER  11 

Simultaneous Equations Models 

CHAPTER OUTLINE 
11.1  Truffle Supply and Demand 
11.2  Estimating the Reduced Form Equations 
11.3  2SLS Estimates of Truffle Demand and 
         Supply                 
 11.3.1  Correction of 2SLS standard errors  
 11.3.2 Corrected standard errors in  
                   truffle demand and supply  
 
 

11.4  Supply and Demand of Fish 
11.5  Reduced Forms for Fish Price and Quantity 
 

 
In this chapter, we estimate simultaneous equation models where there are two or more 
dependent variables that need to be estimated jointly. Ordinary least squares estimation is not 
possible when we are dealing with more than one equation. For example to explain both price and 
quantity of a good, we need both supply and demand equations which work together to determine 
price and quantity jointly.   

11.1 TRUFFLE SUPPLY AND DEMAND 

Consider the supply and demand for truffles: 

Demand: 1 2 3 4
d

i i i i iQ P PS DI e= α + α + α + α +  
 

Supply: 1 2 3
s

i i i iQ P PF e= β +β +β +  
 
In the demand equation, Q is the quantity of truffles traded at time (in ounces) P is the market 
price for truffles in dollars per ounce, PS is the market price for substitutes for truffles in dollars 
per pound, and DI is the per capita disposable income, in thousands of dollars. In the supply 
equation, PF is the price of the factor of production. P and Q are endogenous variables meaning 
their values are determined within the system of equations. The equilibrium levels of price and 
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quantity, P* and Q* are determined by both of these equations. PS, DI, PF are exogenous 
meaning that we take the values as given.   

Open truffles.xls and obtain the summary statistics. Part of the print out is given below. 

 

11.2 ESTIMATING THE REDUCED FORM EQUATIONS 

The reduced form equation expresses each endogenous variable, P and Q, in terms of the 
exogenous variables PS, DI, PF. This can be accomplished by setting the structural equation 
equal to each other and solving for the endogenous variables. 

11 21 31 41 1i i i i iQ PS DI PF v= π + π + π + π +  

12 22 32 42 2i i i i iP PS DI PF v= π + π + π + π +  
  
These equations can be estimated by least squares since all independent variables are exogenous 
and uncorrelated with the error terms. We will estimate two regressions for the reduced form 
equations. Once we estimate these reduced form equations, we will obtain and store the predicted 
values of price, P̂ , and then estimate the structural equations using P̂  and the other exogenous 
variables using the 2SLS technique which was first introduced in Chapter 10.  

First, estimate the quantity equation using Q as the Y-Range, and PS, DI and PF as the X-
Range. Include labels and place results on the worksheet named reduced eq quant and Click 
OK.  
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Next, estimate the regression for the price equation using P as the Y-Range and PS, DI and PF as 
the X-Range. Include labels and place results on a worksheet named reduced eq price. Make 
sure to include Residuals option to obtain the P̂  and click OK. 

 
 
The Quantity (Q) reduced form estimates are: 

 
 
The Price (P) reduced form estimates are: 

 

All explanatory variables in both models are significant. 

11.3 2SLS ESTIMATES OF TRUFFLE DEMAND AND SUPPLY 

To obtain 2SLS estimates, we replace P in the structural equation with P̂  from the reduced form 
equation. To accomplish that, return to the worksheet containing the original data. Create an 
empty column next to the other explanatory variables as Excel requires all explanatory variables 
to be next to each other. Return to the reduced eq price worksheet and Copy cells B26 through 
B56 (Predicted p) to the original data worksheet. Estimate a regression of the structural demand 
equation using Q as the Y-Range and Predicted p, PS  and PF as the X-Range. Include labels 
and place results on the worksheet named stage 2 demand.  
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Return to the worksheet containing the original data. Move the columns around so that phat and 
PF are next to each other to estimate the structural supply equation since Excel requires the X-
Range data to be contiguous. Estimate the regression, using Q as the Y-Range and Predicted p, 
and PF as the X-Range. Include labels and place results on a worksheet names stage 2 supply. 

 
 
The 2nd stage regression results for demand equation are: 
 

 
 
The results for supply equation are: 
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Since the model standard error is based on the LS residuals, the standard errors, t-statistics and 
confidence intervals are incorrect. Since Excel doesn’t have a built in function for these errors, 
we will need to do some calculations. The calculation is explained in the next section. 

11.3.1 Correction of 2SLS standard errors 

In the simple linear regression model 1 2i i iy x e= β +β +  the 2SLS estimator is the least squares 
estimator applied to 1 2 ˆi i iy x e= β +β +  where ˆix  is the predicted value from a reduced form 
equation. So, the 2SLS estimators are  
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In large samples the 2SLS estimators have approximate normal distributions. In the simple 
regression model  
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The error variance 2σ  should be estimated using the estimator  
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with the quantity in the numerator being the sum of squared 2SLS residuals, or SSE2SLS. The 
problem with doing 2SLS with two least squares regressions is that in the second estimation the 
estimated variance is  
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−

∑
 

 
The numerator is the SSE from the regression of yi on ˆix , which is SSEwrong.  

Thus correct 2SLS standard error is 
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and the “wrong” standard error, calculated in the 2nd least squares estimation, is 
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Given that we have the “wrong” standard error in the 2nd regression, we can adjust it using a 
correction factor 

( ) ( ) ( )
2
2 2

2 2 22

ˆ ˆˆ ˆ ˆ
ˆ ˆ

SLS SLS
wrong wrong

wrong wrong

se se seσ σ
β = β = β

σ σ
 

11.3.2 Corrected standard errors in truffle demand and supply 

 
The first step to correcting the standard errors is to calculate the sigmahats of the 2SLS for both 
the supply and demand equations. As in the previous chapter, go back to the original data and 
create two columns.  

 
• Label them residualdemand and residualsupply, respectively.  
• Calculate the residuals for both columns using the 2SLS estimates.  
 

 
 

• Label column I as shown below to calculate the correction factors for both the demand 
and the supply functions.  

• In cells J1 and J5, we calculate the correct sigmahat_2sls for the demand and supply 
functions, respectively.  

• In cells J2 and J6, we copy and paste the sighat_wrong from the demand and supply 
outputs and  

• calculate the correction factors in cells J3 and J7 for demand and supply, respectively.  
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The resulting sighat_2sls figures and the correction factor for demand are 

 
 
Now, we can plug in the correction factor of 1.839479403 into the demand model coefficient 
page and calculate the corrected standard errors, t-test, and the p-values. From the results, we 
have a demand function is downward sloping, and shifts to the right as the price of substitutes 
rises, and shifts to the right as income rises (truffles are a normal good).  All of our coefficients 
are significant at the 5% level.  
 

 

11.4 SUPPLY AND DEMAND OF FISH 

The second example is from the Fulton Fish market. The demand equation is: 

1 2 3 4 5 6ln( ) ln( ) d
t t t t t t tQUAN PRICE MON TUE WED THU e= α + α + α + α + α + α +  

Where ln( )tQUAN the quantity is sold in pounds, and tPRICE  is the average price per pound. 
The remaining are the dummy variables for the days of the week which capture the demand 
shifts. 2α  is the price elasticity of demand, which is should be negative. The supply equation is: 

1 2 3ln( ) ln( ) s
t t t tQUAN PRICE STORMY e= β +β +β +  
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2β  is the price elasticity of supply. The variable STORMY is a dummy variable indicating stormy 

weather during the previous three days. Below are the partial summary statistics on the data set 
fultonfish.xls. 

 

11.5 REDUCED FORMS FOR FISH PRICE AND QUANTITY 

The reduced form equations are estimated using the LSE. We can get them by estimating the 
price and quantity equations as a function of all the exogenous variables. In this case,  

11 21 31 41 51 61 1t t t t t t tQ MON TUE WED THU STORMY v= π + π + π + π + π + π +  

12 22 32 42 52 62 2t t t t t t tP MON TUE WED THU STORMY v= π + π + π + π + π + π +  

The output for the reduced form equations are: 

For the quantity: 

 

For the price: 

 

Now, using the predicted price, phat, we can estimate the structural equations. The output for the 
structural equations is: 



Simultaneous Equations Models   177 

Supply equation: 

 

Demand equation: 

 
 
Recall that, although the point estimates are correct, the standard errors are NOT. You need to 
adjust the standard errors the way illustrated in Section 11.3.2 above. The discussion in the text 
explains why the estimated supply equation is not credible.  
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CHAPTER  12 

Nonstationary Time-Series Data 
and Cointegration 

CHAPTER OUTLINE 
12.1  Stationary and Nonstationary Data 
12.2  Spurious Regression 
12.3  Unit Root Tests for Stationarity 

12.4  Integration and Cointegration 
12.5  Engle-Granger Test 
  

12.1 STATIONARY AND NONSTATIONARY DATA  

One of the fundamental principles of econometrics is that the statistical properties of estimators 
depend on how the data behaves. When time series data is concerned, the data need to be 
stationary for the usual econometric procedures to have desired statistical properties. Time series 
data is stationary when the means, variances, and covariances are constant and don’t depend on 
the period in which they are measured. 

To illustrate stationarity, we will use usa.xls and look at the mean and variance of GDP in 
different sub period using time series plots and summary statistics. Open your file usa.xls. Insert 
a column to the left of GDP and name it t for time.  

 
• Type 1 in cell A2.  
• Type =A2+1 in cell A3 and copy the cell down the entire column.  
• After creating a time counter, highlight the t and GDP columns and go to 

Insert>Chart>Scatter Plot. After some formatting, your time series plot will look like: 
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As many other macroeconomic variables, GDP is a non-stationary time series. It has an 
increasing trend that changes the mean every period. The consequences of non-stationarity can be 
quite severe, resulting in unreliable least squares estimates and test statistics.  

We can also create summary statistics to compare the means in different periods. Below are 
the summary statistics for the first half, second half and overall data. 
 

 

Both plot and the descriptive statistics indicate the GDP data is non-stationary.   

12.2 SPURIOUS REGRESSION 

It is very possible to estimate a regression and find statistically significant relationship where no 
such relationship exists. In time series analysis this is a common phenomenon when data is non-
stationary. Our example will use two time series, rw1 and rw2 that are generated by random 
walks where 

1 1 1: t trw y v+ +  

2 1 2: t trw x v+ +  
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The errors are independent standard normal generated by a pseudo random generator. By 
construction, rw1 and rw2 are not related in any way. Now let’s look at the empirical relationship 
by opening the file spurious.xls. 

Insert a column at Column A and create the time counter as described in the previous section. 
Then plot both of the series against the t variable.  

 
 
Next, scatter plot rw1 against rw2 and observe the potential spurious relationship between the two 
variables. 

 
 
You can also estimate a linear regression that will confirm the suspicion. The coefficient on rw2 
is positive and significant. However, these variables are not related in any way. The cause of the 
spurious relationship is the nonstationarity of the two series. 



Nonstationary Data and Cointegration   181 

 
 
Therefore, it is very important to check for stationarity first, whenever you are dealing with time 
series data. 

12.3 UNIT ROOT TEST FOR STATIONARITY 

The Dickey Fuller (DF) and augmented Dickey-Fuller (ADF) are unit root tests that are used to 
test stationarity. Before conducting the test, there are certain decisions that need to be made about 
the nature of the data in order to implement the correct regression model. These choices can be 
made by visual inspection of the data various plots. For example, if the data has nonzero mean, a 
constant term in the regression is appropriate. Below are the different possible regression models 
for series with different characteristics: 

1t t ty y v−Δ = γ +   No constant and no trend 

1t t ty y v−Δ = α + γ +  Constant but no trend 

1t t ty y t v−Δ = α + γ + λ +  Constant and trend 
 
Recall the GDP plot, which is slightly quadratic in time, so you would choose the regression 
model that included a constant and a trend to conduct the unit root test. The test is conducted by 
estimating the regression and implementing a t-test for the following hypothesis: 

0

1

: 0
: 0

H
H

γ =

γ <
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The augmented version of the DF test (ADF) adds lagged differences to the model and the models 
become:  

1
1

m

t t s t s t
s

y y a y v− −
=

Δ = γ + Δ +∑  

1
1

m

t t s t s t
s

y y a y v− −
=

Δ = α + γ + Δ +∑  

1
1

m

t t s t s t
s

y y t a y v− −
=

Δ = α + γ + λ + Δ +∑  

 
You have to pick a lag length to implement this test. The lag length should be enough to ensure 
that the residuals are not autocorrelated. 

Let’s consider Federal Funds rate (Ft) and the 3-year Bond rate (Bt) for this test. The plots 
indicated both series are nonstationary. 

 
 
Since the series fluctuated from a non-zero mean and didn’t seem to have trend, we will use the 
model with a constant but no trend. We will use one lag for the ADF test. So we will be 
estimating the following regression model for both the Ft and the Bt. 

1 1 1t t t ty y a y v− −Δ = α + γ + Δ +  
 
Open the file usa.xls and estimate two regressions.  
 

• Create 3 columns to the right of column F.  
• Label them diffF, lagF and difflagF for differenced F, lagged F and differenced lagged F, 

respectively.  
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• In cell E3, type =D3-D2.   
• Copy this formula down the column.  
• In cell F3, type =D2, and Copy the formula down the column.  
• In cell G4, type =F4-F3, and Copy the formula down the column. 
• Repeat the same for series F. The formulas have been highlighted in the above sheet.  

 
Next, estimate two regressions; one for B and the other for F. Use the diffF as the Y-Range, and 
lagF and difflagF as the X-Range. Notice that the first observations appear in Row 3. Place 
results on a worksheet named ADF-f .  

Repeat for the B series and store the output in ADF-b. 

 
 
The results for the B series are: 
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The results for the F series are: 

 
 
The t-statistics in this case is also called the tau-statistics within the context of unit root testing. 
These values are compared to the ADF critical values. For both of the series, when compared the 
test statistics to the critical values for the Dickey-Fuller test (which are shown in Table 12.2 of 
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POE), we do not reject our null hypothesis, and conclude that the levels of the series are 
nonstationary.   

12.4 INTEGRATION AND COINTEGRATION 

Two non-stationary series are said to be cointegrated if their differences are stationary. For 
example, Fed Funds rate and the 3-year bond are non-stationary. Both series are “integrated of 
order 1” or I(1). If the two series move together through time, they are said to be cointegrated. 
We can test cointegration by running a regression of one of the I(1) series on the other and testing 
the residuals for stationarity using the augmented Dickey-Fuller test where the null hypothesis is 
that the residuals are non-stationary. Rejecting the hypothesis leads to the conclusion that the 
residuals are stationary and therefore, the series are cointegrated. 

12.5 ENGLE-GRANGER TEST 

The test described above is commonly referred as the Engle-Granger test. We will illustrate the 
test by regressing B on F, save the residuals then use these in an augmented Dickey-Fuller 
regression on the residuals. 

Return to usa.xls file. Estimate the regression B as the Y-Range, and F as the X-Range. 
Include labels and choose the Residuals option. Place the results on a cointegration worksheet.  
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Copy the residuals from the output section to the data section and paste it in the next available 
column. Create differ, lage and difflage and write the relevant formulas as shown below. 

 
 
Estimate a regression, using diffe as the Y-Range and lage and difflage as the X-Range. 
 

 
 
The output is: 
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Compare the results to the 1%, 5%, 10% ADF critical values. If the values are less than the t-
value, reject the null hypothesis and conclude that the residuals are stationary. You can find the 
critical values for this test in Table 12.3 of POE. 
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CHAPTER  13 

An Introduction to 
Macroeconometrics: VEC and 
VAR Models 

CHAPTER OUTLINE 
13.1 VEC and VAR models  
13.2 Estimating VECM 

13.3 Estimating VAR 

13.1 VEC AND VAR MODELS 

The vector autoregressive (VAR) model is a general framework used to describe dynamic 
interrelationship among stationary variables. So first step of any VAR analysis should be to 
determine whether the levels of your data is stationary or not. If not, take the first difference and 
try again. Usually, if the levels of the time series are not stationary, the differences will be. If the 
time series is stationary, then we need to modify the VAR framework to allow consistent 
estimation of the relationship among series. The vector error correction (VEC) model is a special 
case of the VAR for variables that are I(1). The VEC can also take into account any cointegrating 
relationship among the series. 

13.2 ESTIMATING A VEC MODEL 

We will use gdp.xls data on Gross Domestic Product of U.S. and Australia to estimate a VEC 
model. We are using a VEC model because (1) both series are nonstationary in levels and 
stationary in differences (2) the variables are integrated. The following is the time series plot for 
the two series. Go to Insert>Chart> select line graph and highlight both columns of data. 
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After some formatting your plot should look like 

 

Neither of these series is stationary in its levels and they appear to have a common trend. Next, 
we will take the difference of both series. To accomplish that, label cells D1 and E1, diffusa and 
diffaus, for differenced U.S. GDP and differenced Australian GDP, respectively.  
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• In cell C3, type =B3-B2 to difference the series usa and Copy this formula down the 
column.  

• Repeat it for aus; in cell D3, type =C3-C2, and Copy the formula down the column.  
• Highlight both C and D columns and go to Insert>Chart> select line graph.  
• After some formatting the plot for the differenced data will look like 

 

 
The differences of both series seem to be stationary, and possible they may be cointegrated. 

Based on the graphical information, we will estimate Dickey-Fuller regressions for levels 
with intercept, time trend and 2 lags for US equation and 3 lags for Australian equation. Recall 
that the model with intercept and trend is 

1
1

m

t t s t s t
s

y y t a y v− −
=

Δ = α + γ + λ + Δ +∑  

 
Before we estimate the model, we need get the data ready. Return to gdp.xls. 

 
• Insert 5 columns after usa and label those new columns diffusa, lag usa, diffl1usa, 

diffl2usa, and trend. 
• In cell B3, type =A3-A2 and Copy this formula down the column (You already have this 

column from the previous section).   
• In cell C3, type =A2 to get the lagged values of usa, and Copy the formula down the 

column.  
• In cell D4, type =C3 to get the lagged values of the differenced data for usa, and Copy 

the formula down the column.  
• In cell E5, type =C3 to get the double lagged values of the differenced data for usa, and 

Copy the formula down the column. 
• In cell F1, type 1, in cell F2 type 2. Highlight the two cells and drag it down to create a 

time trend. 
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• Repeat the same process for series aus except add another lag for the difference since we 
are using 3 lags for aus.. The formulas have been highlighted in the below sheet. 

 
 

Next, estimate two regressions; one for usa and the other for aus. Use the diffusa as the Y-Range, 
and lag usa, diffl1usa, diffl2usa, and trend as the X-Range. Notice that the first 4 rows will not 
be used due to missing values. Place results on a worksheet named ADF for USA 

 
 
Repeat for the aus series and store the output in ADF for AUS 
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The ADF results for USA are: 

 
 
and for Australia: 
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In each case, the null hypothesis of nonstationarity can not be rejected at any significance. Notice 
that both lagged differences are significant in the US equation and the 3rd lag in the Australian 
equation are significant. Next, we will estimate the cointegration equation. Notice that the 
cointegration equation does not include a constant. Return to gdp.xls file. Estimate the regression 
aus as the Y-Range, and usa as the X-Range. Include labels and choose the Residuals option. 
Place the results on LS for cointegration worksheet.  

 
 
The output is: 
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We saved the residual to for the Engle-Granger test of cointegration as described in Section 12.5 
of this manual. Copy the residuals from the output section to the data section and paste it in the 
next available column and rename the column e. Create diffe, lag e and diffl1e and write the 
relevant formulas as shown below. 

 
 
We will estimate the relationship 1ˆ ˆt t te e v−Δ = φ + . 

 
 
which produces the following result: 
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The t-ratio is −2.89. The 5% critical value for the model with no intercept is −2.76. The t-ratio 
falls within the rejection region and the null hypothesis of no cointegration is rejected and we 
conclude that the two real GDP series are cointegrated. 

To get the VEC model results for Australia, we will estimate the following regression. 

 
 
The results are: 
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The significant negative coefficient on lag e indicates that the Australian GDP responds to 
disequilibrium between the US and Australia. 

If we estimate the VEC model for USA, 

 

We obtain: 
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The US, does not appear to respond to the disequilibrium between the two economies. These 
finding support the idea that the economic conditions in Australia depend on those in the US but 
not vice verse. In this simple model of two economy trade, the US acts as a large closed economy 
and Australia as a small open economy.  

13.3 ESTIMATING A VAR 

The VEC model incorporates cointegration equation. It is relevant when two variables are I(1) 
and integrated. Vector autoregressive model (VAR) is used when there is no cointegration among 
variables and is estimated using time series that have been transformed to their stationary values. 
To illustrate VAR model, we will use growth.xls. As  earlier, the first step is to determine whether 
the variables are stationary. If they are not, we will difference them and make sure the difference 
is stationary. Next, we will test for cointegration, if they are cointegrated, we will estimate the 
VEC model. If the series are not cointegrated, then using the differences and the lagged 
differences, we will estimate a VAR model. 

Let’s first plot the series and the differenced series. Plotting will help us determine the 
existence of intercept and/or trend components. 
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The fitted least squares regression results of Gt on Pt are: 

 
 
Observe the very large R2, and t-ratio. However, based on the plots, the series appear to be 
nonstationary. To test for cointegration, we estimate the Dickey-Fuller regression. The following 
are the results from that regression: 

 

Since the tau (unit root t-value) of −0.977 is greater than the 5% critical value of the test for 
stationarity of −3.37, we conclude the residuals are nonstationary. Hence the relationship between 
G and P is spurious. Therefore instead of a VEC model, we need to apply a VAR model to these 
series. 
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For illustrative purposed, the order of lag in this example will be restricted to 1. In general, 
one should test for the significance of lag terms greater than 1. The models we will be running 
are: 

10 11 1 12 1t t tP P G− −Δ = β +β Δ +β Δ  
 

20 21 1 22 1t t tG P G− −Δ = β +β Δ +β Δ  
 
We need to modify the growth.xls worksheet to include the above variables as shown below: 

 
 
The least square results for CPI equation are: 

 
 
The results indicate that the growth in price ( tPΔ ) is significantly related to its own past value 
( 1tP−Δ ) but insignificantly related to growth rate in GDP in the previous period ( 1tG −Δ ). 

The least square results for G are: 

 
 
These results indicate that tGΔ  is significantly and positively related to its own past value and 
significantly and negatively related to last period’s inflation ( 1tP−Δ ). 
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CHAPTER  14 

An Introduction to Financial 
Econometrics: Time-Varying 
Volatility and ARCH Models 

CHAPTER OUTLINE 
14.1 ARCH Model and Time Varying Volatility  
14.2 Testing, Estimating, and Forecasting 

 

14.1 ARCH MODEL AND TIME VARYING VOLATILITY 

In this chapter, we will estimate several models in which the variance of the dependent variable 
changes over time. These types of models are broadly referred to as autoregressive conditional 
heteroskedasticity (ARCH) models. These models have become popular because the variance 
specification can capture commonly observed features of the time series of financial variables. 
They are especially useful in modeling volatility and changes in volatility over time. To 
understand volatility and time-varying volatility, we will look at the returns.xls which shows the 
time series of the monthly returns to four different stock market indices. 

Open returns.xls and plot each series using Insert>Chart and choosing Line plot. After some 
editing, the plots look like this: 
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The series are characterized by random, rapid changes and are said to be volatile. The volatility 
seems to change over time for all 4 series. Next, to generate histograms of the series, go to 
Tools>Data Analysis>Histogram. After some editing the histograms look like: 

 
 
Based on the histograms, we can say the series are leptokurtic. In other words, they have a lot of 
observations around the average and a relatively large number of observations that are far from 
average. 
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14.2 TESTING, ESTIMATING, AND FORECASTING 

The basic ARCH model has two equations; one equation to describe the behavior of the mean, 
and another to describe the behavior of the variance. 

The mean equation is a linear regression function that contains a constant and possibly some 
explanatory variables. The example below contains only an intercept.  

0t ty e= β +  where te ~ 2(0, )tN σ  
 
In this case, the series is expected to vary random about its mean. The error of the regression is 
normally distributed and heteroskedastic. The variance of the current period depends on the 
information revealed in the proceeding period.  

2
1 1t th e −= α + α  

 
where the variance of te  is given by th . Notice that th depends on the squared error in the 
preceding period. The parameters in this equation have to be positive to ensure a positive 
variance.  

To test for the presence of the ARCH effects, we can use a Lagrange Multiplier (LM) test. To 
conduct this test, we first estimate the mean equation, store least squares residuals from the mean 
equation, square them and run an auxiliary regression to observe the impact of previous error 
term for a 1st order ARCH process. In other words, testing for ARCH(1), requires to regress 2

t̂e on 
the lagged residual 2

1t̂e − . 

2 2
0 1 1ˆ ˆt t te e v−= γ + γ +  

 
where tv is the random error of the auxiliary relationship. The null and alternative hypotheses to 
be tested are: 

0 1

1 1

: 0
: 0

H
H

γ =

γ ≠
 

 
The LM test statistic is NR2 with a (1)χ  distribution under null hypothesis, where N is the number 
of observations in the auxiliary regression. The general version of the LM test is to conduct an 
ARCH(q) test and include q lags of 2

t̂e  as regressor. This version will have ( )qχ  distribution if the 
null hypothesis is true and N in this case will be T − q. 

We will use byd.xls data to as the first ARCH example. Open the Excel file named byd.xls 
and go to Insert>Chart and plot the line plot for visual inspection of the time series. 
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As can be seen from the plot, there is visual evidence of volatility in the series. We will propose 
and test and ARCH(1) model against the null hypothesis of no ARCH using the LM test 
discussed earlier. First, estimate the mean equation. Recall that the mean equation we are running 
does not have any explanatory variables. Excel will not estimate the model without defining the 
X-Range so we will have to trick Excel. In cell B1, type intercept and create a column of ones. 
Next, estimate the regression using the r as the Y-Range, and intercept as the X-Range. Make 
sure to suppress the intercept, include the labels and keep the residuals. 

 
 
In order to test the ARCH(1) model, we now need to estimate the auxiliary regression. Copy the 
residuals from the output section to the data section and paste it in the next available column. 
Rename it e, and create e square , and lag e square and write the relevant formulas as shown 
below. 
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Now, to test for first-order ARCH, regress 2

t̂e  on 2
1t̂e −  by estimating the regression using the e 

square as the Y-Range, and lag e square as the X-Range. 

 
 
Given the LM=62.16, we reject the null hypothesis, there is evidence of presence of ARCH(1) 
process. 

Unfortunately, ARCH models and all its extensions are estimated using by the maximum 
likelihood method and beyond the capabilities of Excel.  
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CHAPTER  15 

Panel Data Models 

CHAPTER OUTLINE 
15.1 Sets of Regression Equations 
15.2 Seemingly Unrelated Regressions         
 15.2.1 Breusch-Pagan test of independence 

15.3 The Fixed Effects Model 
 15.3.1 A dummy variable model  
15.4 Random Effects Estimation 

15.1 SETS OF REGRESSION EQUATIONS 

Times series data are observations on the same unit taken over time. For example, annual GDP 
over a ten-year period would be time-series data. Cross-sectional data are observations at one 
point in time, over different units, such as 1990 per capita income for each of the 50 U.S. states. 
In this section we will examine investment data from two firms (cross section) and for 20 periods 
(time series). Open grunfeld2.xls. The descriptive statistics for the two firms can be obtained by 
choosing Tools>Data Analysis>Descriptive Statistics. Below are some of the descriptive 
statistics after some editing: 

 
 
The equations we consider first are the individual investment models.  
 

, 1 2 , 3 , ,GE t GE t GE t GE tINV V K e= β +β +β +             t=1,…,20 

, 1 2 , 3 , ,WE t WE t WE t WE tINV V K e= β +β +β +             t=1,…,20 
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If the models have the same parameters, we can estimate a pooled regression model using all 40 
observations. However, if the parameters are not identical the models will be: 
 

, 1, 2, , 3, , ,GE t GE GE GE t GE GE t GE tINV V K e= β +β +β +             t=1,…,20 

, 1, 2, , 3, , ,WE t WE WE WE t WE WE t WE tINV V K e= β +β +β +             t=1,…,20 
 
We will first estimate two separate regressions using Tools>Data Analysis>Regression. Check 
the Residuals option for later use. Click OK. 

 
 
Estimate another regression for WE using D1 through D21 as the Y-Range and E1 through F21 
as the X-Range, include labels and check the Residuals option for later use. Click OK. 

 
 
The least squares results for GE are: 
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The least squares results for WE are: 

 
 

To test whether we should pool the data or not, create the below dummy variable model: 

, 1, 1 2, , 2 3, , 3 ,i t GE i GE i t i GE i t i i tINV D V D K D e= β + δ +β + δ +β + δ +  
 
where D = 1 for Westinghouse observations and 0 otherwise.   

To estimate the dummy variable model in Excel, create three new columns and name them D, 
DV and DK respectively. Column D will take the value 1 for WE and 0 for GE, Column DV will 
take the respective v values for Westinghouse and 0 for General Electric, and Column DK will 
take the respective k values for Westinghouse and 0 for General Electric. The worksheet will look 
like: 
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Estimate a regression, using A1 through A41 for the Y-Range, and cells B1 through F41 as the 
X-Range. Place the results on a worksheet named OLS with dummies. 

 
 
The results are 

 
 
From these results, if we plug in 1 for D, we obtain two estimated regressions, one for GE and 
one for Westinghouse.  Since D = 1 for WE and D = 0 for GE, the respective equations are: 
 

GE (D = 0):   , ,9.9563 0.02655 0.15169i t t i tINV V K= − + +  
 

Westinghouse (D = 0):  , 0.5094 0.0529 0.0924i t t tINV V K= − + +  
  
The parameter estimates here are exactly as those from the separate regression equations above, 
but the standard errors are different.  This new model treats the coefficients in the same way as 
before, but now assumes constant variance across all the observations.  

To test for the significant differences in the variances, we use the Goldfeld-Quandt test, 
where - 

_ / _GQ SSE GE SSE WE=  
 
We can get the SSEs for the separate regressions from the output and calculate GQ as:  
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13216.5871/1773.23405 7.45338GQ = =  
 
The F(17,17,.95) critical value is 2.2718 with a p-value of 0.3284. We reject the null hypothesis 
of equal variance and find that there is strong evidence that the error variance for the two 
equations are different. 

15.2 SEEMINGLY UNRELATED REGRESSIONS 

We will now assume that the error terms in the two equations, at the same point in time, are 
correlated. This is called contemporaneous correlation.. Adding this assumption of 
contemporaneous correlation provides additional information to our model and it should be 
incorporated. Seemingly unrelated regression (SUR) permits equation coefficients and variances 
to differ and also allows for  contemporaneous correlation between the errors, 

, , ,cov( , )GE t WE t GE WEe e = σ  
 
While most statistical packages perform SUR estimation automatically, Excel does not. The basic 
procedures used in SUR are (1) estimate the two equations separately via least squares, (2) use 
the residuals in step (1) to obtain estimates of the variances and covariances in order to transform 
the data, and (3) estimate the equations jointly via generalized least squares.  Unfortunately, the 
transformation necessary to perform the generalized least squares is beyond the scope of text. 

15.2.1 Breusch-Pagan test of independence   

In order to determine when to pool the data and use SUR or when to estimate the equations 
separately, we need to test for the independence of errors. If the errors are not correlated, separate 
estimation is fine. The test for correlation between the errors is called the Breusch-Pagan test. If 
the null hypothesis of zero correlation is not rejected, again, separate estimation is fine. 
 

2
,GE WEBP Tr=  

 

where 
2

2 ,
2 2,

GE WE
GE WE

GE WE
r σ=

σ σ
 and 

20

, , ,
1

1 ˆ ˆGE WE GE t WE t
i

e e
T =

σ = =∑ .  

 
The test statistic is distributed as ( )

2
1χ  under the null hypothesis of no contemporaneous 

correlation. To calculate the estimated correlation between the equations, we will use the 
residuals from the separate OLS results. 

 
• Return to the worksheet GE and highlight cells C25 to C45.  
• Choose Edit>Copy or click the Copy icon.  
• Go to the WE worksheet and Paste in cells D25 through D45.  
• In cell E26, type =C26*D26 and copy this formula down to cell E45.  
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• In cell E46, type =SUM(E26:E45).  
• In cell E47, type =E46/20.  The result is 176.4490614 and represents ,GE WEσ .  

 
Next, we need a degrees of freedom adjustment for the calculation. Excel calculates the estimated 
model variance by dividing by T−K. Because the Breusch-Pagan test is only asymptotically 
justified, we divide only by T. Since the estimated model variance is the SSE divided by T−K, we 
can simply recalculate using information from the ANOVA tables of our separate regressions.  

 
• In cell D9 of the GE worksheet, type =C13/20.  The result is 660.8293885.  
• In cell D9 of the WE worksheet, type =C13/20.  The result is 88.66169652.  
• In a blank cell, say E7 of WE, type  =(176.4490614^2)/(660.8293885*88.66169652).  

The result is 0.531389929. 
• In cell F7, type =E7*20 and  
• in cell G7, type =CHIDIST(F7,1). 

 
Based on the BP test, we reject the null hypothesis and find evidence of contemporaneous 
correlation between the error terms.  SUR is the appropriate analysis.  

15.3 THE FIXED EFFECTS MODEL 

The fixed effects model is a model for pooling data where the intercept is allowed to change 
across firms but not across time and slope coefficients are assumed to be the same across firms.  



Panel Data Models   211 

Since all behavioral differences between firms and over time will be captured by the intercept, 
this model is called a fixed effects model.   

15.3.1 A Dummy Variable Specification 

The fixed effects model permits cross-section heterogeneity by allowing only the intercept to vary 
across individuals using dummy variables. We will also extend our model to include data on all 
ten firms in grunfeld.xls. This data set has the investment data for ten companies for 20 periods 
each. Below is an edited portion of the descriptive statistics of the dataset. 

 
 

We will need nine dummy variables for ten forms, one firm will be the base firm and captured by 
the intercept term. And the coefficient for each firm will be the difference between the intercept 
for its firm and the intercept for the "base" firm (the "variable of omission").  Recall that if we 
include all ten dummy variables, we will have perfect multicollinearity and estimation would not 
be possible. 

 
• First, we will create the dummy variables. Open the file named grunfeld.xls.  
• Label cells F1 through N1, D1 through D9.  
• In cells F2 through F21, type "1" and type "0" in the remaining cells of the column.  
• In cells G22 through G41, type "1" and type "0" in all other cells of the column.  
• Continue in this fashion, typing "1" appropriately for each firm, and "0" otherwise using 

the Copy and Paste functions.  

 
 

• Estimate a regression, using column C as the Y-Range, and columns D through N as the 
X-Range. 

• Include labels and place results on a worksheet named Unrestricted. 
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The results are 
 

 
 
To obtain the results in Table 17.2, remember that we did not include a dummy variable for the 
tenth firm, so its intercept is −6.546. And for all the other firms, the intercept is the difference 
between the coefficient of the firm dummy and the intercept. For example, for Firm 1, the 
intercept is the difference −6.546−62.60 = −69.146. Based on the p-values for the dummy 
coefficients, it appears that Firms 1, 4, and 6 do not have intercepts that differ significantly from 
−6.546. 

To test the equality of the intercepts, the null and alternative hypotheses are: 

0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9: D D D D D D D D DH β = β = β = β = β = β = β = β = β  
 

1 1,: iH β  are not all equal 
 
This is a regular F-test where we can use the template we previously created. The model we 
estimated above is the unrestricted model, so now we just need to run the restricted model, where 
we force all nine intercept coefficients to be equal. We can run the restricted model by returning 
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to the worksheet containing the data and running a regression, including only V and K as the X-
Range. Place the results on a worksheet named Restricted. 
 

 
 
The results are: 

 
 

• Open the F-template created earlier.  
• Copy the SSE from cell C13 of the Unrestricted model and  
• Paste it to cell B7 of the template.  
• From the Restricted model, Copy the SSE in cell C13 and  
• Paste it to cell B6 of template.  
• We are testing for 9 restrictions and sample size is 200, so set the J = 9, T = 200, and K = 

12. 
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We reject the null hypothesis and find evidence that at least one firm has an intercept different 
from the rest. 

15.4 RANDOM EFFECTS ESTIMATION 

We only make inferences about the firms on which we have data.  The error components model 
assumes the intercepts are random variables, drawn from a population distribution of firm 
intercepts.  One result of this is that the error terms from the same firm in different time periods 
are correlated.  The error components model, therefore, is sometimes called a random effects 
model. 

We know that generalized least squares estimation is appropriate when we have correlated 
error terms.  While it is possible to carry out the calculations with Excel, you are best advised to 
use an econometric software package with a specialized routine for estimation of the random 
effects model. 
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CHAPTER  16 

Qualitative and Limited Dependent 
Variable Models 

CHAPTER OUTLINE 
16.1 Models with Binary Dependent Variables 
 16.1.1 The linear probablility model 

16.1.2 Least squares estimation of the linear  
            probablility model 

16.1 MODELS WITH BINARY DEPENDENT VARIABLES 

So far, our focus has been on models in which the dependent variables is continuous; prices, 
revenues, quantities etc. However, as a general theory of choice, microeconomics deals with 
many choices where the outcomes are qualitative. In this chapter, we will consider choices that 
are of the "either-or" type. That is, we choose to buy a particular car or not, we choose one job 
over another, we vote either for or against a particular issue.  In trying to explain these types of 
choices, the dependent variable is dichotomous, or binary, since we quantify the choices by 
assigning values zero or one.  We then construct a statistical model that explains why particular 
choices are made and what factors influence those choices. 

To illustrate a model with a dichotomous dependent variable, consider a problem from 
transportation economics.  Workers can either drive to work (private transportation) or take a bus 
(public transportation). For simplicity, we will assume these are the only two alternatives.  The 
individual’s choice will be represented by a dummy variable y, where  

1 if the individual drives to work
0 if the individual takes a bus to work

y
⎧

= ⎨
⎩

 

 
If we collect random sample of workers who commute to work, then the outcome y will be 
unknown to us until the sample is drawn. Thus, y is a random variable. If the probability that an 
individual drives to work is p, then [ ]1P y p= = . It follows that the probability that a person uses 
public transportation is [ ]0 1P y p= = − . The probability function for this random variable is  
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( ) ( )11 yyf y p p −= − , 0,y = 1 
 
where p is the probability that y takes the value 1. This discrete random variable has expected 
value [ ]E y p=  and variance ( )var (1 )y p p= − . 

If we assume that the only factor that determines the probability that an individual chooses 
one mode of transportation over the other is the difference in time to get to work between the two 
modes, then we define the explanatory variable x as 

x = (commuting time by bus – commuting time by car) 
 
While there are other factors that affect this choice, we will focus on this single explanatory 
variable. A priori we expect a positive relationship between x and p that is as x increases, the 
individual will be more inclined to drive.  

16.1.1 The linear probability model 

In regression analysis, the dependent variable is broken into two parts; fixed (systematic) and 
random (stochastic). If we apply this to random variable y, we have 

( )y E y e p e= + = +  

We then relate the systematic portion of y to the explanatory variables that we believe will help 
explain the expected value. We are assuming that the probability of driving is positively related to 
the difference in driving times, x, in this example. If we assume a linear relationship, then we will 
have the following linear probability model. 

1 2( )E y p x= = β +β  
 
In this chapter, we will examine the problems with least squares estimation in the context of 
binary choice models. However, for these models least squares estimation methods are not the 
best choice. Instead, maximum likelihood estimation (see Appendix C.8 of your book) is the 
method to use. Excel does not have the capabilities to perform maximum likelihood estimation. 
Other statistical packages such as EViews or SAS should be used when dealing with binary 
choice models. 

16.2 Least squares estimation of the linear probability model 

The linear regression model for explaining the choice variable y is called the linear probability 
model and is given by 

1 2( )y E y e x e= + = β +β +  
 
To see how to apply the linear probability model in Excel, open the file transport.xls. Estimate 
the regression, using auto as the Y-Range and dtime as the X-Range.  Include labels and check 
the Residuals option. label the worksheet “linear probability model” and click OK. 
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The least squares results are 

 
 
The explanatory variable is significant, suggesting that an increase of one minute in the difference 
between the time it takes to get to work by bus versus by car increases the probability of driving 
to work. However, the linear probability model has a very serious problem. Let’s look at the fitted 
model, using least squares estimation: 

ˆ( ) 0.4848 0.007E y p dtime= = +  
 
For certain values of dtime, the estimated probability might turn out less than zero or greater than 
one which is NOT possible for any valid probability function. If we look at the residual output we 
can observe multiple occurrences of this problem. 
 



218   Chapter 16  

 
 
The problem arises because, the linear probability model is an increases function in x and the 
increase is constant. However, given the requirement for a valid probability function of 0 ≤ p ≤ 1, 
a constant rate of increase is not possible. Unfortunately, more appropriate models such as the 
Logit and Probit model can not be estimated using the standard version of Excel. 
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CHAPTER  17 

Importing Internet Data 

Up to now, we have taken you through various econometric methodologies and applications 
using already prepared Excel workfiles. In this chapter, we show you how to import data into an 
Excel spreadsheet.  

Getting data for economic research is much easier today than it was years ago. Before the 
Internet, hours would be spent in libraries, looking for and copying data by hand. Now we have 
access to rich data sources which are a few clicks away.  

Suppose you are interested in analyzing the GDP of the United States. As suggested in POE 
Chapter 17, the website Resources for Economists contains a wide variety of data, and in 
particular the macro data we seek. 

Websites are continually updated and improved. We shall guide you through an example, but 
be prepared for differences from what we show here.  

First, open up the website: www.rfe.org :  
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Select the Data option and then select U.S. Macro and Regional Data. 

 
 
This will open up a range of sub-data categories. For the example discussed here, select the 
National Income and Produce Accounts to get data on GDP.  

 
 
From the screen below, select the Gross Domestic Product (GDP) option. 
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Most websites allow you to download data convenietly in an Excel format. 

 
Be sure to save the file which is called gdplev.xls. 
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Once the file has been downloaded (in this example, to C:\gdplev.xls), we can open the file and a 
sample of the data in Excel format is shown below. 
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APPENDIX  B 

Review of Probability Concepts 

CHAPTER OUTLINE 
B.1 Binomial Probabilities 
 B.1.1 Computing binomial probabiliies directly 
 B.1.2 Computing binomial probabilities using 
                  BINOMDIST 
 

B.2 The Normal Distribution 
 

 
Excel has a number of functions for computing probabilities.  In this chapter we will show you 
how to work with the probability function of a binomial random variable, how to compute 
probabilities involving normal random variables. 

B.1 BINOMIAL PROBABILITIES 

A binomial experiment consists of a fixed number of trials, n.  On each independent trial the 
outcome is success or failure, with the probability of success, p, being the same for each trial.  
The random variable X is the number of successes in n trials, so x = 0, 1,…., n.  For this discrete 
random variable, the probability that X = x is given by the probability function 

( ) ( ) ( ) ( )! 1 , 0,1, ,
! !

n xxnP X x f x p p x n
x n x

−⎛ ⎞
= = = − =⎜ ⎟⎜ ⎟−⎝ ⎠

…  

 
We can compute these probabilities two ways: the hard way and the easy way.  

B.1.1 Computing binomial probabilities directly 

Excel has a number of mathematical functions that make computation of formulas 
straightforward. Assume there are n = 5 trials, that the probability of success is p = 0.3, and that 
we want the probability of x = 3 successes.  What we must compute is 
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( ) ( ) ( ) ( )5 335!3 3 .3 1 .3
3! 5 3 !

P X f −⎛ ⎞
= = = −⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
Eventually you will learn many shortcuts in Excel, but should you forget how to compute some 
mathematical or statistical quantity, there is a Paste Function (f*) button on the Excel toolbar, 

 
 
Click on the Paste Function button, select Math & Trig in the first column, and scroll down the 
list of functions in the right-hand column.  When you reach Fact you see that this function returns 
the factorial of a number.   

 
 
Click OK.  In the resulting dialog box, enter 5 and Excel determines that 5! = 120.   
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Alternatively, click on Help.  In the resulting dialog box, enter factorial and click Search 

 
 
Click on FACT. 

 
 
You are presented with an Excel function, FACT(number), a definition and some examples. 

The other mathematical operations we need to compute the binomial probability are 
multiplication (*), division (/) and power (^). 

In cell A1 type “f(3)”, and in B1 type the formula 
 

=(FACT(5)/(FACT(3)*FACT(2)))*(0.3^3)*(0.7^2) 
 
It will look like 

 
 
Note that we have used parentheses to group operations.  
Hit <enter>, and the result is 0.1323. 

B.1.2 Computing binomial probabilities using BINOMDIST 

The Excel function BINOMDIST can be used to find either cumulative probability, ( )P X x≤  
or the probability function, ( )P X x=  for a Binomial random variable.  Syntax for the function is 
 

BINOMDIST(number_s, trials, probability_s, cumulative) 
 
where number_s is the number of successes in n trials 
 trials is the number of independent trials (n) 
 probability is p, the probability of success on any one trial 
 cumulative is a logical value.  If set equal to 1 (true), the cumulative probability is 

returned; if set to 0 (false), the probability mass function is returned. 
 
Access this function by clicking the Paste Function button. Select Statistical in the Function 
category and BINOMDIST in the Function name. 
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Using the values n = 5, p = .3, and x = 3 we obtain the probability 0.1323, as above. 

 
 
 
Alternatively, we can type the function equation directly into a cell.  For example, if p = .2 and n 
= 10, to find the probability that X = 4 and X ≤ 4, the worksheet would appears as follows: 
 

=BINOMDIST(4,10,0.2,0) 0.08808 
=BINOMDIST(4,10,0.2,1) 0.967207 

 
The formulas in the first column produce the results reported in the second column. 
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B.2 THE NORMAL DISTRIBUTION  

Excel provides several functions related to the Normal and Standard Normal Distributions. 
 
1.  The STANDARDIZE function computes the Z value for given values of X, μ, and σ. The 
format of this function is 
 

STANDARDIZE(X, μ, σ) 
 
Referring to the example in POE Section B.5.1 in which μ = 3 and σ = 3, if we wanted to find the 
Z value corresponding to X = 6, we would enter =STANDARDIZE(6,3,3) in a cell, and the value 
computed would be 1.0. 
 
2. The NORMSDIST function computes the area, or cumulative probability, less than a given Z 
value.  Geometrically, the cumulative probability is 

 
 
The format of this function is 
 

NORMSDIST(Z) 
 
If we wanted to find the area below a Z value of 1.0, we would enter =NORMSDIST( 1.0) in a 
cell, and the value computed would be .8413. 
 
3.  The NORMSINV function computes the Z value corresponding to a given cumulative area 
under the normal curve. The format of this function is 
 

NORMSINV(prob) 
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where prob is the area under the standard normal curve less than z.  That is, prob = P(Z < z). If we 
wanted to find the z value corresponding to a cumulative area of .10, we would enter 
=NORMSINV(.10) in a cell and the value computed would be −1.2815. 
 
4.  The NORMDIST function computes the area or probability less than a given X value. The 
format of this function is 
 

NORMDIST(X, μ, σ, TRUE) 
 
TRUE is a logical value, which can be replaced by 1.  If we wanted to find the area below an X 
value of 6, we would enter =NORMDIST(6,3,3,1) in a cell, and the value computed would be 
.8413. 
 
5.  The NORMINV function computes the x value corresponding to a cumulative area under the 
normal curve. The format of this function is 
 

NORMINV(prob, μ, σ) 
 
where prob is the area under the normal curve less than x.  That is, prob = P(X < x).  To compute 
the value of x such that .10 of the probability is to the left, enter =NORMINV(.10,3,3) in a cell, 
yielding −0.8446. 
 
For the example in Section 2.6, a template can be built in Excel to compute probabilities and 
values of X corresponding to particular probabilities.  The highlighted cells require user input.  
The formulas in the other cells do the computations.  Set up a spreadsheet that looks like the 
following 
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 A B 
1 Normal Probabilities  

2 mean  
3 standard_dev  
4   
5 Left-tail Probability  

6 a  
7 P(X<=a) =NORMDIST(B6,B2,B3,1) 
8   
9 Right-tail Probability  

10 a  
11 P(X>=a) =1-NORMDIST(B10,B2,B3,1) 
12   
13 Interval Probability  

14 a  
15 b  
16 P(a<=X<=b) =NORMDIST(B15,B2,B3,1)-NORMDIST(B14,B2,B3,1) 
17   
18 Inverse cumulative  
19 Left-tail probability  
20 Quantile =NORMINV(B19,B2,B3) 
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Using X∼N(3,9), the above template would produce the following results: 
 

Normal Probabilities  
mean 3 
standard_dev 3 
  
Left-tail Probability  
a 6 
P(X<=a) 0.84134474 
  
Right-tail Probabiity  
a 6 
P(X>=a) 0.15865526 
  
Interval Probability  
a 4 
b 6 
P(a<=X<=b) 0.210786144 
  
Inverse cumulative  
Left-tail probability 0.95 
Quantile 7.934559001 

 
Note that the Quantile = 7.93 gives the top 5% "cut off" value. 
 
Once again, if you forget these formulas, use the Paste Function (f*) button on the Menu Bar.  
 




