

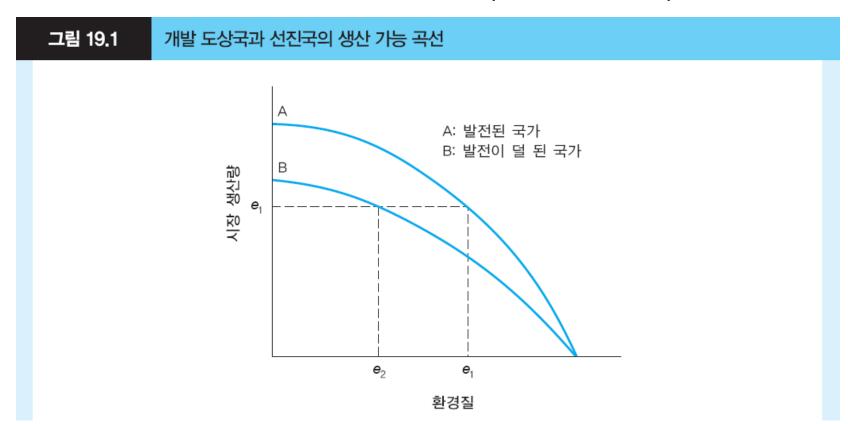
제19장 경제 발전과 환경

Environmental Economics

제6판

환경경제학

Barry Field, Martha Field 공저 한택환, 김금수, 임동순, 홍인기 공역

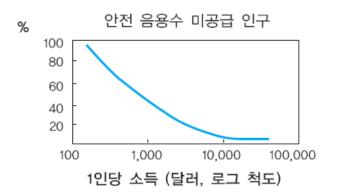

∑ 시그마프레스

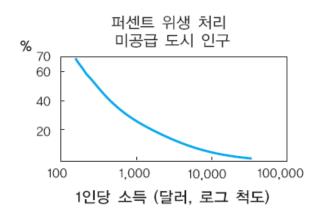
경제 발전과 환경

- 양적 성장 위주의 경제 성장과는 달리 경제 발전은 보다 폭넓은 기술적, 제도적, 사회적 전환을 포함하는 개념
 - 교육, 의료, 인구, 교통 인프라, 법적 제도 등의 변화모두 발전의 개념에 포함
- 개발 도상국 환경 문제 (세계은행)
 - 개발 도상국에서는 5~6백만 인명이 수인성 질병과 대기 오염으로 사망
 - 환경 오염으로 인한 많은 개발 도상국의 경제적 피해 규모 국내총생산(GDP)의 약 4~8% 추정
 - 기후 변화는 장기적인 경제 발전 여력 훼손, 빈곤에서 탈출하려는 능력을 하락

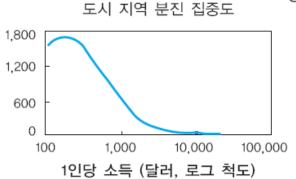
경제와 환경

 개발 도상국이 시장 생산량 c1 수준 달성 위해 환경질이 e2로 악화되는 맞교환 관계 수용(정태적 관점)

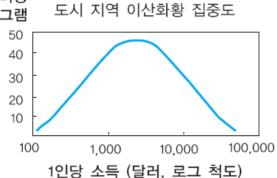



경제와 환경

- 그러나 개발 도상국에서 환경질과 GDP 수준 보완적 관계라는 명백한 사례 존재 (지속가능 관점)
- 경제가 자원에 덜 의존하고 저공해 기술이 채택되는 방식으로 변화
 - 생산 가능 곡선이 바깥쪽으로 이동하여 시장 생산량과 환경질 간 잠재적 맞교환 현상의 개선
 - 한 국가의 소득과 발전 위한 자연 자원 자산의 생산성이 장기적으로 하락하지 않는 지속 가능한 상태 가능
 - 개발 도상국의 기술 선택과 환경질에 대한 사회적 선호도 등에 따라 국가별로 다르게 나타남


그림 19.2 국가

국가 소득 수준과 환경 지표의 관계



공기 세제곱미터당 마이크로그램

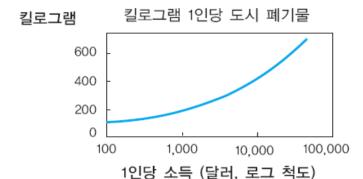

공기 세제곱미터당 마이크로그램

그림 19.2

국가 소득 수준과 환경 지표의 관계

*화석 연료 연소에 의한 배출량

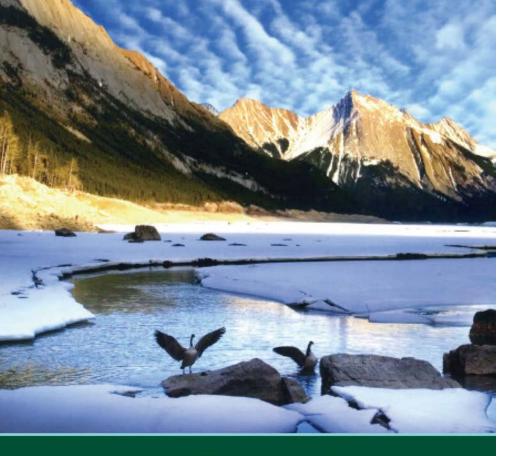
주 : 추정 결과는 1980년대 국가 간 지표 분석에 의거하여 도출

출처: 원서에서 그대로 넣어 주세요 (이탤릭 포함하여)

오염 피난처 가설

- 선진국의 매우 높은 규제 수준으로 인하여 특히 '오염 집약적인' 일부 기업들이 보다 환경 규제가 약한 지역으로 이동
- 일부 개발 도상국은 자국의 경제 성장률을 가속화하기 위하여 낮은 환경 규제 수준을 조건으로 걸어 오염 집약적인 기업 유치
- 그러나 입증 어렵고, 자료에 의한 실증적 연구 필요
 - 생산 단위당 오염 배출량이 상대적으로 높은 철강,
 산업용 화학 등 염 집약적 산업의 기초 제조업 부문은
 경제 발전 초기에 확장되다가 이후 소득이 증가함에
 따라 감소
 - 소득이 증가하면서 환경 규제도 더욱 강화 사례 존재

개발 도상국에서의 환경 정책의 선택


- 효과적인 환경정책 수행위해 서로 다른 정책대안의 비용과 편익 분석하여 파악
- 비용편익분석 기법 적용 중요 고려 사항
 - 오염 저감의 편익을 측정하는 수단으로서 지불 의사액(willingness-to-pay, WTP) 추정
 - 적정 할인율 선정과 장기적인 지속 가능성과 세대 간 형평성 현안 논의
- 현행 정책의 환경 관련 인센티브 억제 수단 축소
 - 농업 보조금(특히 비료, 살충제 등) 축소
- 제도적 접근으로 재산권 설정 명확화
 - 공유자산 문제의 해결

개발 도상국에서의 환경 정책의 선택

- 환경 정책으로서의 인구 정책
 - 총 환경 영향 = 1인당 환경 영향×인구수
 - 도시화 대응
- 적절한 환경정책 수단의 도입
 - 직접 규제(명령과 통제)와 인센티브 기반 정책 사이의 선택
 - 비용효과성을 파악하여 특정 국가에 적합한 수단 도입
- 선진국의 역할
 - 기술이전
 - 자연 환경과 부채의 교환 거래

개발 도상국에서의 환경 정책의 선택

- 국제 구호 기관 활동의 환경 가치
 - 기금이 부족한 개도국 공공 당국의 대규모 환경문제 (산림 황폐화 등) 대응 역량을 더욱 약화시키는 결과를 초래
 - 대다수의 국제 공여 기관들은 댐, 발전소, 사회 간접자본 등 대규모 사업을 많이 수행
 - 이러한 사업은 대부분 환경 영향에 대한 고려가 적음
 - 재정지원기관과 수여국 정부 모두 경제 성장 성과를 지나치게 강조하기 때문

제20장 국제 환경

Environmental Economics

제6판

환경경제학

Barry Field, Martha Field 공저 한택환, 김금수, 임동순, 홍인기 공역

Σ 시그마프레스

성층권 오촌층 파괴

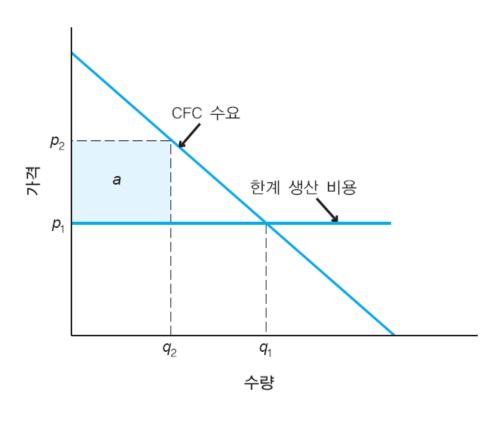
- 심각한 오존층 고갈 광범위한 인구 밀집 지역에 주기적으로 나타남
 - 건강 피해와 농작물 수확량 감소 야기
- 오존층 고갈 물질에 대한 몬트리얼 의정서
 - 초창기 일부 국가에서 일방적인 대응(미국, 캐나다, 북유럽 국가 등)
 - 몬트리얼 의정서 협약에 따라 서명국들은 오존층 물질의 생산과 소비를 점진적으로
 - 일부 경우 단계적 중단이 소비 동결보다 앞서서 진행
 - 추가 개정안에서 탄소사염화물과 메틸클로로포름을 추가, 2000년까지 CFC 생산 전면 철폐 합의
 - 2012년 인도와 중국 포함 197개 국가 비준

丑 20.1

몬트리올 의정서 및 후속 수정안의 단계적 폐지 일정

	선진국		개발 도상국		
	소비 동결	폐지	소비 동결	폐지	
염화불소(CFCs)	1989년 1월	1996년 1월	1999년 7월	2010년 1월	
Halons	-	1994년 1월	2002년 1월	2010년 1월	
Other fully \sim	-	1996년 1월	-	2010년 1월	
Carbon \sim	-	1996년 1월	_	2010년 1월	
Methyl \sim	1993년 1월	1996년 1월	2003년 1월	2015년 1월	
Hydrochlorofluorocarbons (HCFCs)	1996년 1월	2030년 1월	2016년 1월	2040년 1월	
Methyl \sim	1995년 1월	2005년 1월	2002년 1월	2015년 1월	

United Nations Development Program, Montreal Protocol, http://www.undp.org/seed/eap/Montreal/Montreal.htm .


CFC 통제의 경제학

- 기존 납함유 휘발유 통제 정책과 유사
- 선진국: 냉매, 세척제 등과 같이 CFC의 기능이 있으나 오존층 고갈 효과는 없는 대체 물질 개발
 - 협약 및 개정안 현안은 대체 물질 개발 비용과 구 화학 물질에서 신 화학 물질로 전환하는 데 따르는 비용
- 몬트리얼 의정서 주요 조항
 - 특정 물질의 생산과 소비의 단계적 폐지를 위해 부과되는
 개별 국가에 대한 요구 사항
 - 개발 도상국들이 협약에서 명기한 정책 목표를 달성하기 위하여 필요한 다자간 기금 설정에 선진국 기여
 - 특정 오존층 고갈 화학 물질에 대한 서명국과 비서명국 간의 교역을 금지하는 교역 규제 조항, 해당 물질 포함 제품의 교역 제한

CFC 통제의 경제학

- 이러한 생산 총량 설정에 따르는 문제점은 현재 CFC 생산자들의 이익이 부당하게 증가할 수 있다는 점
- 그림 20.1 CFC에 대하여 우하향하는 수요 곡선과 수평선의 한계 비용 곡선 가정
 - 규제가 없는 경쟁 시장의 경우 생산량은 q1, 가격은 한계 생산 비용과 같은 p1에서 결정
 - 그러나 공공 당국이 생산량을 q2로 제한하면 가격은 생산 비용을 훨씬 상회하는 p2로 상승
 - 이에 따라 그림에서 a에 해당하는 면적만큼의 잠재적인
 초과 이익이 생산량 제한으로 인해 해당 산업에서 발생
- 한 가지 대안은 CFC 생산 권리를 다양한 화학물 생산 기업에 경매 방식으로 배분

그림 20.1 한계 피해 함수의 분석

CFC 통제의 경제학

- 이론적으로는 가격 (p2-p1)에 해당하는 조세 부과로 인해 모든 초과 이익이 일반 대중에 이전
 - 조세 수입으로 확보된 기금은 다양한 목적을 위하여 사용
 - 정부의 일반 재정 수입으로 활용되거나 보다 특정적인CFC 전환 과정을 지원하는 데 활용
 - 세율 = 기본 세율×오존층 고갈 잠재성 지수
- 국가 간 배출 저감 크레디트 거래
 - 어떤 국가가 '산업 발전' 필요성 등의 사유로 생산 감축
 요구량을 준수하지 못할 경우 다른 나라로부터 상응하는
 저감 크레디트 확보하여 초과 배출량 상쇄

지구 온난화

- 지구온난화 또는 온실효과: 지구 지표 온도가 장기적으로 상승하는 데 따르는 위협
 - 산업 혁명은 기본적으로 에너지 이용의 혁명, 방대한 화석 연료 사용
 - 화석 연료의 연소로 인하여 산림 황폐화 및 다른 요인 등과 함께 대기 중 이산화탄소(CO2)의 함유량은 산업 혁명 이전에 비해 약 40% 증가
 - 특히 지난 30여 년 동안 15%가 증가하였으며, 많은 과학자들의 견해에 따르면 21세기 중반까지 대략 2배 수준 증가할 것으로 예상
 - CO2가 가장 중요한 온실가스(GHG), 그러나 메탄,
 질소산화물, 일산화탄소 등의 다른 기체도 온실효과 기여

± 20.2

주요 온실가스

온실가스	전체 대비 비중
이산화탄소(CO ₂)	
화석 연료 사용	57
산 림황폐화, 바이오매스의 부패	17
기타	3
메탄 (CH4), 농업, 매립지, 흰개미	14
아산화질소(N2 _o)	
농업, 비료, 폐기물 소작	8
기타(오존층 파괴 물질, 일산화탄소 등)	1

지구온난화의 영향

- 인간과 생태계에 대한 영향은 국가별, 지역별로 상이
- 산림과 농업 활동에 대한 기후 패턴의 변화는 인간의 가장 커다란
- 과학적 불확실성과 인류의 선택 어려움 존재
- 완화(또는 저감, mitigation)와 적응(adaptation)
 - 완화는 현재 발생하는 온실가스 배출량을 저감하여지구 기온 상승을 감소시키거나 지연시키는 조치
 - 적응은 기온 상승으로 발생하는 부정적 효과를 대대적으로 감소시켜 적응하는 현재와 미래 세대의 노력
 - 대응 조치의 비용효과성의 개념 인식 필요

온실 효과에 대한 기술적 대응

• CO2의 생산 증가율과 변화 방정식(GDP: 국내총생산)

	총 CO2 배출량 = (CO2 백만 톤)	인구 (백만 명)	×	GDP/인구 (천 명)	×	에너지/GDP (석유 환산 톤)	×	CO2/에너지 (CO2 톤)
세계 전체	35,865	6,361.9		8.2		0.255		2.70
미국	6,870	293.7		36.4		0.254		2.53
인도	1,607	1,079.7		2.9		0.245		2.09
변화 비율								
세계 전체	1.7	1.7		1.0		-0.6		-0.4
미국	3.7	0.9		3.8		- 1.0		0.0
인도	4.5	2.0		1.2		1.2		0.1

온실 효과에 대한 기술적 대응

- CO2 배출량은 네 가지 요소의 상호 작용에 의해 결정
 - 인구: 인구 규모가 큰 경우 CO2 더 많이 배출
 - 1인당 GDP: 경제성장으로 더 배출
 - 에너지 효율: 1달러(1원, 1유로 등)의 생산을 위해 소요되는 에너지의 투입량, 상대적으로 적은 에너지 투입을 요구하는 생산, 유통, 소비 기술 도입 필요
 - 에너지 소비 단위당 CO2 발생량: 에너지원별 구조 조정, 신재생 에너지원의 중요성 부각

국내적 국제적 온실가스 저감 방안

- 총량 제한 배출권 거래제(CAP)와 배출 부과금 (또는 배출세)
- 국제적 노력: 책임 분담 방안
 - 배출량에 비례적인 저감 분담
 - 능력 원칙 : 현재 소득 수준에 근거하여 기초 배출 저감량 결정
 - 오염 배출자 부담의 원칙 : 현재 또는 과거 온실가스 배출 기여에 따라 기초 배출 저감량 결정
 - 1인당 배출량 균등 원칙: 지구 상의 모든 사람은 지구 환경 소비에 있어서 동일한 수준을 부여받는다는 가정에 따라 기초 배출 저감량 결정

사례 20.2 온실가스 감축 정책 수단의 성과 비교

요소	전통적 규제 (기준 설정)	배출권 총량 제한 거래제	탄소세
배출 저감량 확실성	기준 성격에 따라 변동	있음	
가격·비용 확실성	없음	없음	있음
신기술 도입 확산	대부분 없음, 일부 제한적 기술의 경우 가능	있음	있음
재정 수입 증대	없음	전통적인 무상 배분의 경우 없음, 유상 배분(경매 등)의 경우 있음	있음
규제 산업 경쟁력 저하	어느 정도 영향	있음	있음(포괄적 과세 아닌 경우)
정치적 수행 가능성	매우 높음, 익숙함	특히 무상 배분의 경우 중간 수준	낮음
새 정책 수단 요구	없음	있음	매우 적음

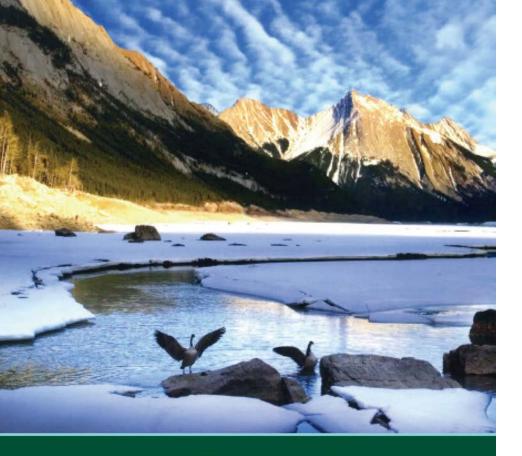
온실가스 억제를 위한 교토 의정서

- 6개 온실가스에 대하여 2008~2012년 동안 달성할 의무가 있는 배출 감축 목표 설정
- 감축 목표 낮은 비용 달성 위해 신축성 체제 포함
 - 국제 배출권 거래제 : 부속서 B 국가들 자국의 온실가스 배출 감축 의무를 배출권 참여국 간에 매매 가능
 - 공동 이행 : 부속서 B 국가들 공동 사업 시행
 - 청정 개발 체제 : 부속서 B 국가들 비부속서 B 국가들의 온실가스 감축 사업에 재정 지원을 하여 온실가스 저감 크레디트 확보, 목표 감축량에 활용

온실가스 억제를 위한 교토 의정서

- 목표 설정 계획의 주요 내용
 - 배출 저감 목표는 단일 연도가 아닌 5개년 이행 기간 동 달성
 - 1차 연도는 2008년, 민간 기업이 보다 에너지 효율적,
 저탄소 기술로 이행하도록 충분한 기간 고려
 - 대상 온실가스는 이산화탄소, 메탄, 질소산화물, 그리고 온난화 잠재 영향이 높고 대기 중에 장기간 체류하는 오촌층 고갈 CFC을 대체하는 3개 화합 물질 포함
 - 조림과 같은 탄소 흡수 수단은 저감목표에 대한 상쇄 수단으로 사용, 조림과 재조림을 활성화하기 위하여 '흡수'도 포함

새로운 전 지구적 온실가스 협약


- 새로운 협약의 선정 기준 합리적으로 설정 필요
 - 온실가스 감축의 양적 목표는 단기와 장기 모두 설정
 - 이러한 목표 달성을 위한 비용과 편익 분석, 특히 비용효과적인 정책과 수행 절차에 대한 논의 필요
 - 부유한 국가와 개발 도상국의 배출 감축 부담이 배분에 있어서 형평성 고려 필요
 - 새로운 과학 정보의 발견에 의거하여 감축 수행 능력의 변화를 점검하는 신축적인 대응이 필요, 협약 내 국가와 이외 국가의 참여 관련 조항에 변화 필요
- 2015년 21차 당사국 회의에서 "신기후체제" 설정 예상
 - INDC(intended nationally determined contributions)
 공약 접근

생물 다양성

- 유전자 물질 스톡(stock)의 다양성, 종 다양성, 생태계 내의 다양성 유지 필수적
 - 생물학적 단일성은 새로운 여건 변화에 대하여 경직적이고 취약한 대응 능력 문제를 야기
 - 다양성은 생태계가 변화에 적응할 수 있는 수단 제공
 - 인류는 특정한 종의 동식물을 수확하거나 이용하지 못할 경우 존속할 수 없음
 - 서식지 파괴에 기인하여 몇몇 생물 종은 과도하게 착취되어 소멸
 - 세계적으로 축적된 유전 자본 정보의 중요성은 지속적으로 과소평가

생물 다양성

- 국제적, 개별 국가별 생물 다양성 회복 노력 지속
 - 미국 1973년 멸종 위기 종 법안(Endangered Species Act, ESA)를 제정하여 개별 종 보호
 - 복잡한 생물학적 균형을 유지할 수 있도록 충분한 수준의 서식지 유지 및 관리 매우 중요
 - 생물 다양성 가치가 높은 지역을 보존 수준별로 최대 보존 지역, 보호지구, 공원 등으로 분류하여 차별적으로 보호 활동 수행
 - 유전적 자원에 재산권 체계를 설정하여 보존과 사적 재산권의 문제를 해결하는 변화 유도 필요

제21장 국제 환경 협약

Environmental Economics

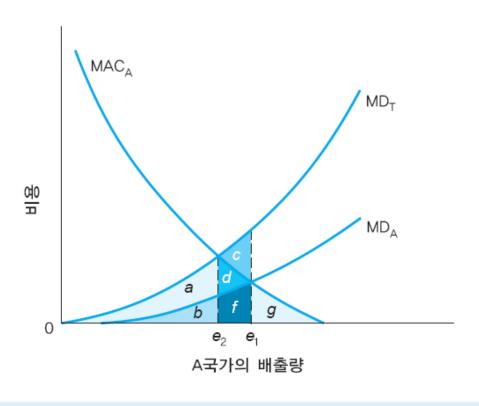
제6판

환경경제학

Barry Field, Martha Field 공저 한택환, 김금수, 임동순, 홍인기 공역

∑ 시그마프레스

국제 환경 협약의 필요성


- 환경적 외부 효과와 개별 국가의 특수한 여건 등으로 인하여 환경 문제에 대해 다수의 국가들이 공동으로 대응하는 체제의 개발이 더욱 필요
 - 그러나 국제적 수준에서 강제 이행을 수행할 메커니즘이 국내에서보다 매우 약함
 - 특정 국가 내의 환경 규제 당국은 법안이 통과될 경우 강제 이행 가능
 - 국제 수준에서는 이러한 강제 이행 규제 당국이
 존재하지 않으며, 필수적으로 주권 국가 간의 국제 협약으로 구성

주요 현안

- 표 21.1에 자연과 환경 자원을 대상으로 하는 현재 다자간 협약 주요 사항이 제시
- 표준적인 국제 협약은 관리 기관의 신설, 자금 조달 방안, 정보 공개와 공유 등 다양한 형식의 제도적 실행 관련 사항뿐만 아니라 개별 서명 국가들이 취해야 할 실천 수단 구체적으로 명기
- 대부분의 다자간 조약은 실제로 지역적 범위에서 운용
 - UN은 특정 해역을 둘러싼 국가 간 지역 협약(지중해, 홍해, 남태평양, 서부 아프리카 연안 등)을 지원
 - 2개 국가의 환경 문제를 다루는 수백 개의 양자 간 협약존재

- 다양한 참여 국가에 대해 인지되는 편익과 비용에 영향을 미치는 근본적인 경제적 요인과 국제 협상에 참여하여 얻게 되는 인센티브로 구성되는 체계
- 그림 21.1는 양자 간 협약의 균형을 설명
 - A국가의 한계 저감 비용(MACA)과 자국 오염 배출로 인하여 유발되는 한계 피해 함수 표시
 - A국가가 B국가에 대하여 유발하는 외부 효과를 고려하지
 않고 배출량을 관리한다면 최적 오염 배출량은 e1
 - B국가 피해을 고려하여 전체적으로 효율적인 배출량 수준은 e2
 - A국가의 배출량이 e1에서 e2로 변화하면 A국가의 저감 비용이 추가적으로 (d+f)만큼 증가하지만 피해 감소는 단지 f만 발생하게 되어 A국가의 순 편익은 감소

그림 21.1 양자 간 월경성 오염 문제와 합의 달성을 위한 경제적 접근

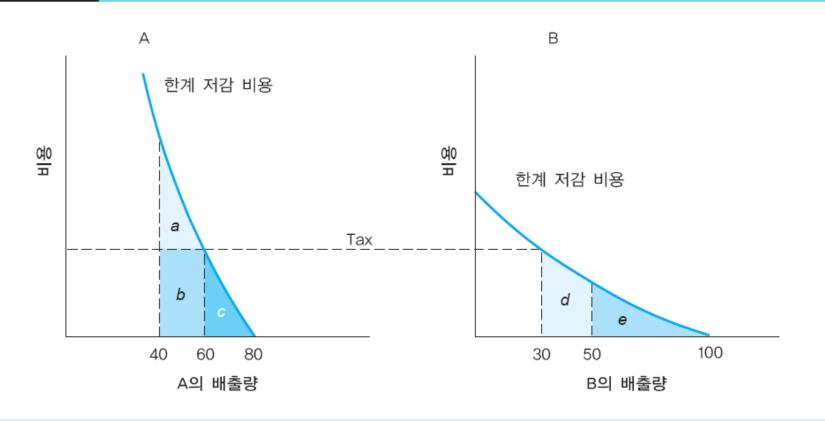
- 국제법상 앞의 사례는 오염 배출자 지불 원칙(polluter pays principle, PPP)에 의해 해결
- 실제 피해와 편익을 고려하여 두 국가는 부분적으로 희생자 지불 원칙(victim pays principle, VPP)을 따라야 함
 - e1에서 e2로 변경된 후 발생하는 A국가의 순 손실은 B국가에 의하여 보상 필요
 - A국가는 e1에서 e2로 변경된 후 추가적인 (d+f)의 비용이 발생하지만, 동시에 f의 편익(피해 감소)이 발생하므로 순 비용은 d와 같다. B국가의 피해 감소 총액이 (c+d)이므로 A국가에 대하여 비용을 보상하여 주더라도 B국가는 c만큼의 순편익
 - 환경 협약의 일부 사례에서 참여 국가들이 이러한 방식의 금액지불(측면 보상) 있으나 정치적으로 해결 필요

- 다자간 협약은 다수 국가가 관련
- 효율성과 형평성의 문제가 동시에 관련
 - 주로 강조되는 사안이 저감 비용과 국가 간 비용 배분
- 비용 관련 현안
 - 협약에 따른 성과를 달성하기 위하여 다양한 국가에서 어떠한 수단이 동원되는가
 - 참여 국가 간에 전체 비용이 어떻게 배분되는가
 - 물론 서명국들이 채택하는 비용효과적 수단이 전체 참여국들이 공동 부담해야 하는 협약 프로그램의 전체 비용을 대폭 줄일 수 있는지에 대한 문제는 항상 존재

- 전 지구적 배출 통제 협약은 국제 공공재를 공급하는 일이므로 비용 배분은 특히 중요한 사안
 - CO2 20%를 감소하는 경우 특정 국가가 얻게 되는 편익은 어떤 국가가 CO2를 감소하든 동일
 - 따라서 각 국가는 가능한 한 다른 국가들이 전체
 온실가스 저감 비용의 많은 부분을 부담하도록 하는
 인센티브 체계 선호
- 다른 국가의 저감 노력에 대해 무임승차 문제
 - 협약에 참여하는 경우 편익이 발생하는데 다른 나라만 협약에 참여하고 자국이 참여하지 않는 경우에는 더 큰 편익이 발생

4	1		
30700			N
		247	
		= -	1

상황	비용	편익	순편익
1. 모든 국가가 배출 저감에 동의	10	20	10
2. 협상 결렬	0	-5	-5
3. 모든 다른 국가는 배출 저감에 동의하지만, A국가는 불참	0	19	19


비용의 배분

- 저감 비용은 각 국가에 대하여 다음과 같이 세 가지 방식으로 영향 발생
 - 자국의 배출량 저감을 위한 정책 수단의 선택으로서 예를 들면 엄격한 명령 통제형 방식과 보다 확대된 인센티브 체계의 정책 사이에서 선택
 - 전체 저감량을 각 국가별로 어떻게 배분하느냐에 대한 국제 협약상의 배분 원칙
 - 수혜국이 국제 협약의 일부로서 다른 국가에게 지불하는 상쇄 비용에 따라 영향 (이러한 이전 지출을 측면 보상)

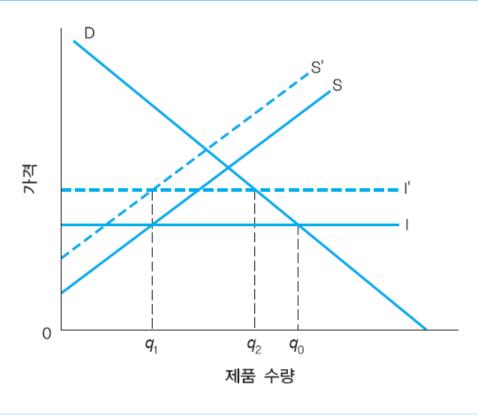
다자간 협약의 비용효과성

- 저감 목표 달성을 위해서 상대적으로 낮은 한계 오염 저감 비용을 나타내는 국가들은 많은 배출량의 감축이 요구되고 상대적으로 높은 비용의 국가들은 적은 배출량 감축이 요구
 - 그림 21.2에 A국가의 한계 저감 비용은 B국가에 비하여 훨씬 가파름
 - 현재 배출량은 A국가가 80 B국가 100
 - 50% 저감 협상 결과 A는 40, B는 50 저감
 - 그러나 목표 달성을 위하여 소요되는 비용은 A국가가 (a+b+c)
 비용으로 B국가 (d+e)보다 훨씬 높음
 - 국가 간 저감 비용이 다른 경우에 동일 비율 저감의 원칙을 강하게 준수하면 비용효과적인 저감 달성이 매우 어려움
 - 세계적으로 이전 가능한 배출 허용권(Transferable discharge permit, TDP) 체계 도입하여 해결 가능

그림 21.2

국제 무역과 환경

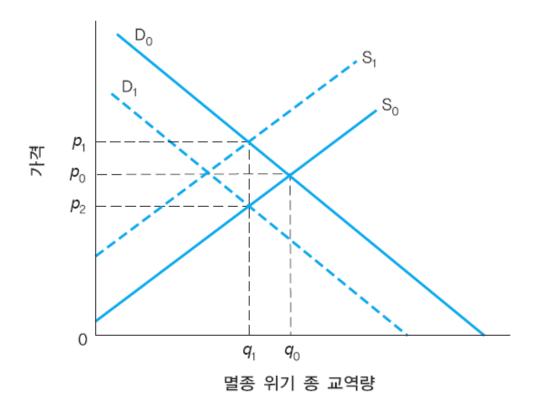
- 교역 증대와 환경 요인 간의 연계성
 - 무역 흐름과 환경 보호의 상호적인 영향: 교역 증대가 상대국에 환경 피해 영향과 환경 보호를 위한 국내적 노력이 국제 무역에 미치는 영향 현안이 두 교역 당사국 관점 또는 보다 포괄적인 교역 네트워크 관점 논의
 - 개별 국가가 어떠한 조건에서 환경질을 보호한다는
 명분으로 수입이나 수출을 합법적으로 규제 가능 논의
 - 국제 교역을 규제하여 단일 집단으로서의 세계 사회
 전체가 환경질을 개선할 수 있는지 그 여건에 대한 논의


국제 무역과 환경

- 자유 무역과 환경 교역 규제
 - 자유 무역에 대하여 강조하는 것이 각국이 추구하는 환경 자원의 보호를 어렵게 할 수도 있다는 점
 - 세계 무역 기구(World Trade Organization, WTO)는 국제 무역 관계에 각국이 준수해야 할 절차와 규칙 조항을 설정
 - 무역 장벽을 축소하고 수입 관세나 수입 할당, 수출보조금 폐지
 - 과도한 검사 요구, 과도한 제품 규격과 같은 비관세 장벽 금지
 - 그러나 WTO 규칙에 대한 폭넓은 예외 조항 존재: '인간, 동식물의 생명이나 건강 보호와', '자연 자원의 보존' 등을 달성하기 위한 규제 허용

국제 무역과 환경

- 국내 생산과 수입에 대한 환경 규제 효과
 - 그림 21.3 특정 국가 내 어느 제품 시장의 생산자와 소비자의 행위 예시
 - 수입이 없다면, 가격과 수량은 두 곡선이 만나는 점에서 결정
 - 수입(I)이 도입 시 해당국의 총 소비가 q0에서 결정, 국내 생산 q1, 생산량 격차 (q0-q1) 수입분 충당, 수입에 따라 국내 가격은 세계 시장의 가격과 일치
 - 엄격한 환경 기준을 적용하면 수입 공급 곡선은 I'로 이동, 비차별적 조치로 국내 공급 곡선은 S'로 이동
 - 해당 국가 구매되는 수량은 q0에서 q2로 감소
 - 국내와 수입 자동차에 대한 오염 억제 조치로 인하여 국내 생산은 변화하지 않지만 수입은 (q0-q1)에서 (q2-q1)로 감소


그림 21.3 국내 생산과 수입에 대한 환경 규제 효과

국제 환경 목표를 달성하기 위한 무역 규제

- 몬트리올 의정서
 - 오존층 고갈 화학 물질 저감목표, 서명국은 어떠한 규제 물질도 비서명국에서 수입 불가
- 화학 물질 관련 런던 가이드라인
 - 특정 화학 물질 금지, 매우 엄격 규제 국가는 다른 회원국에게 관련 사실 고지, 위험 평가/적절 조치 수행
- 유해 폐기물의 국가 간 이동
 - 유해 폐기물 수입에 대한 동의와 해당 폐기물 적합 처리 인증 없이는 어떠한 유해 폐기물도 수출 금지
- 멸종 위기 동식물 종의 국가 간 교역에 관한 협약
 - 각국 독자적인 허가제 설립 야생 동식물의 수출과 수입 관리, 그룹별로 교역 규제

멸종 위기종 국제 시장의 무역 정책

